Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the study was to evaluate continuous bioethanol production from oilseed rape (OSR) straw hydrolysate using Saccharomyces cerevisiae cells immobilised in Lentikat® discs. The study evaluated the effect of dilution rate (0.25, 0.50, 0.75 and 1.00 h(-1)), substrate concentration (15, 22, 40 and 60 g L(-1)) and cell loading (0.03, 0.16 and 0.24 g d.c.w.mL(-1) Lentikat®) on bioethanol production. Volumetric productivity was found to increase with increasing substrate concentration from 15 g L(-1) to 60 g L(-1). A maximum volumetric productivity of 12.88 g L(-1)h(-1) was achieved at a substrate concentration of 60 g L(-1) and at a dilution rate of 0.5h(-1). An overall mass balance for bioethanol production was created to determine the energy recovery from bioethanol and concluded that a biorefinery approach might be the most appropriate option for maximising the energy recovery from OSR straw.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.12.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!