Unlabelled: The present study compares protein diversity within three Anabaena species (Anabaena doliolum, Anabaena sp.PCC 7120 and Anabaena L31). 2-DE based analysis of 256 protein spots in control and 1, 3, 5, and 7days of salt treatment resulted into 96 proteins arching across fourteen functional categories were assigned to biochemical pathways using KOBAS 2.0. While 52.34% of the evaluated protein spots were common across three species, the remaining 47.66% fraction mainly comprised of the hypothetical and unknown proteins. PSORTb, CDD, Motifscan and Pfam revealed function and subcellular localization for 27 of the 31 hypothetical and unknown proteins. The differences in high salt tolerance (LC50) of A. doliolum over A. L31 was reflected by (i) many fold accumulation (as spot volumes) of Alr3090, Alr0803, peptidyl prolyl cis-trans isomerase and modulator of DNA gyrase proteins, and (ii) a better photosynthesis and energy homeostasis as indicated through photosystem activity, respiration, ATP and NADPH contents. Some common noteworthy salt effects include (i) photosystem damage, (ii) DNA damage repair, (iii) upregulated protein synthesis, (iv) enhanced sulphur metabolism, and (v) upregulated pentose phosphate pathway. 34 of the identified protein spots are novel entries to the Anabaena salt proteome. This study reveals the existence of separate strategies even within species to combat stress.
Biological Significance: This study for the first time enumerates protein diversity in three Anabaena species employing their presence/absence and relative abundance. Proteomics integrated with physiology and bioinformatics deciphers differential salt tolerance among the studied species and is the first of its kind to predict the function of hypothetical and unknown proteins. Salt-induced proteomic alterations clearly demonstrate significant metabolic shifts and existence of separate molecular phenome among the species investigated. This may be responsible for niche specificity limiting their application as biofertilizer. Of the 96 identified proteins, a large chunk are new entries to the Anabaena salt proteome while some protein genes may be used as potential candidates for engineering salt tolerant cyanobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2013.12.020 | DOI Listing |
Int J Biol Macromol
October 2024
Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India. Electronic address:
This study has explored the involvement of Intrinsically Disordered Proteins (IDPs) in cyanobacterial stress response. IDPs possess distinct physicochemical properties, which allow them to execute diverse functions. Anabaena PCC 7120, the model photosynthetic, nitrogen-fixing cyanobacterium encodes 688 proteins (11 % of the total proteome) with at least one intrinsically disordered region (IDR).
View Article and Find Full Text PDFPhysiol Mol Biol Plants
October 2023
Department of Renewable Energy, Punjab Agricultural University, Ludhiana, Punjab 141004 India.
The cooperative role of vital components of the antioxidative defense pathway in addition to redox couples was studied in a growth-phase dependent manner at 20, 30, and 40 days after subculturing (DAS) in five different euryhaline microalgal strains (EMS) MKB (B-S), (B-6) sp. (B-7), sp. (B-8), and (B-18) collected from waterlogged areas of Punjab, India and in two freshwater microalgal strains (FMS).
View Article and Find Full Text PDFFront Microbiol
February 2023
Department of Botany, Mahila Mahavidyalaya (M.M.V.), Banaras Hindu University, Varanasi, India.
This study was undertaken to bridge the knowledge gap pertaining to cyanobacteria's response to pretreatment. The result elucidates the synergistic effect of pretreatment toxicity in cyanobacterium PCC7120 on morphological and biochemical attributes. Chemical (salt) and physical (heat) stress-pretreated cells exhibited significant and reproducible changes in terms of growth pattern, morphology, pigments, lipid peroxidation, and antioxidant activity.
View Article and Find Full Text PDFInt J Biol Macromol
April 2023
Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Cyanobacterial DnaJ offers thermo-tolerance and effectively prevents aggregation of denatured protein in coordination with DnaK. The hypothetical protein All3048 of Anabaena sp. PCC7120 was found to be a 24 kDa DnaJ III protein with a putative J-domain at the extreme N-terminus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!