We recently showed that social encounter stimulation induces hyperactivity in mice reared in social isolation from early life and this is associated with the transient activation of prefrontal dopaminergic and serotonergic systems. In the present study, we examined the effect of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2, 3-dioxo-6-nitro-1, 2, 3, 4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) on encounter-induced behavioural and neurochemical changes to study the role of the receptor in abnormal behaviours in isolation-reared mice. The encounter to an intruder mouse induced hyperactivity with transient increases in prefrontal dopamine and serotonin levels in isolation-reared mice. NBQX attenuated the encounter-induced hyperactivity and the associated neurochemical changes in isolation-reared mice. In addition, NBQX reduced aggressive behaviour and cognitive impairment in isolation-reared mice, but did not affect depressive-like behaviour or spontaneous hyper-locomotion in these animals. The AMPA receptor agonist (S)-AMPA increased prefrontal dopamine and serotonin release, and this effect was higher in isolation-reared mice than in the group-reared mice, suggesting higher prefrontal AMPA receptor activity in isolation-reared mice. Furthermore, isolation rearing increased the expression of AMPA receptor subunits (GluR1, GluR2 and GluR3) and GluR1 Ser845 phosphorylation in the prefrontal cortex, but not in the hippocampus or nucleus accumbens. Taken together, these results suggest that an increase in AMPA receptor activity in the prefrontal cortex contributes to some, but not all, abnormal behaviours in isolation-reared mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145713001582 | DOI Listing |
Mol Psychiatry
May 2024
Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
J Pharmacol Sci
February 2024
Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. Electronic address:
Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (S)-norketamine ((S)-NK), (R)-NK, (2S,6S)-hydroxynorketamine, and (2R,6R)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (S)-NK showed a long-lasting (1 week) effect.
View Article and Find Full Text PDFCell Mol Life Sci
September 2022
Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
Patients with autism spectrum disorder (ASD) typically experience substantial social isolation, which may cause secondary adverse effects on their brain development. miR-124 is the most abundant miRNA in the human brain, acting as a pivotal molecule regulating neuronal fate determination. Alterations of miR-124 maturation or expression are observed in various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
View Article and Find Full Text PDFJ Tradit Complement Med
May 2022
Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
Background And Aim: Early-life stress is thought to affect aggressive behavior in humans and rodents. Laboratory experiments have demonstrated that Sansoninto (SST; suān zǎo rén tāng), a traditional herbal medicine, attenuates stress-induced abnormal behavior in rodents. However, it is unknown whether SST attenuates stress-induced aggressive behavior.
View Article and Find Full Text PDFBrain Res
October 2021
Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!