The impact of human hyperekplexia mutations on glycine receptor structure and function.

Mol Brain

Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia.

Published: January 2014

Hyperekplexia is a rare neurological disorder characterized by neonatal hypertonia, exaggerated startle responses to unexpected stimuli and a variable incidence of apnoea, intellectual disability and delays in speech acquisition. The majority of motor defects are successfully treated by clonazepam. Hyperekplexia is caused by hereditary mutations that disrupt the functioning of inhibitory glycinergic synapses in neuromotor pathways of the spinal cord and brainstem. The human glycine receptor α1 and β subunits, which predominate at these synapses, are the major targets of mutations. International genetic screening programs, that together have analysed several hundred probands, have recently generated a clear picture of genotype-phenotype correlations and the prevalence of different categories of hyperekplexia mutations. Focusing largely on this new information, this review seeks to summarise the effects of mutations on glycine receptor structure and function and how these functional alterations lead to hyperekplexia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895786PMC
http://dx.doi.org/10.1186/1756-6606-7-2DOI Listing

Publication Analysis

Top Keywords

glycine receptor
12
hyperekplexia mutations
8
mutations glycine
8
receptor structure
8
structure function
8
hyperekplexia
5
mutations
5
impact human
4
human hyperekplexia
4
function hyperekplexia
4

Similar Publications

Genome-wide association study on chronic postsurgical pain in the UK Biobank.

Br J Anaesth

January 2025

Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands. Electronic address:

Background: Chronic postsurgical pain (CPSP) persists beyond the expected healing period after surgery, imposing a substantial burden on overall patient well-being. Unfortunately, CPSP often remains underdiagnosed and undertreated. To better understand the mechanism of CPSP development, we aimed to identify genetic variants associated with CPSP.

View Article and Find Full Text PDF

Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.

View Article and Find Full Text PDF

NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.

View Article and Find Full Text PDF

Introduction: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is characterized by brainstem symptoms, muscle rigidity, and myoclonus. While autoantibodies to inhibitory neurons have been associated with the pathology, about 30% of cases are negative for autoantibodies. There are few reported cases of antibody-negative PERM and its clinical course and prognosis are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!