A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Solvation of lithium salts in protic ionic liquids: a molecular dynamics study. | LitMetric

Solvation of lithium salts in protic ionic liquids: a molecular dynamics study.

J Phys Chem B

Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela , Campus Vida s/n, E-15782, Santiago de Compostela, Spain.

Published: January 2014

The structure of solutions of lithium nitrate in a protic ionic liquid with a common anion, ethylammonium nitrate, at room temperature is investigated by means of molecular dynamics simulations. Several structural properties, such as density, radial distribution functions, hydrogen bonds, spatial distribution functions, and coordination numbers, are analyzed in order to get a picture of the solvation of lithium cations in this hydrogen-bonded, amphiphilically nanostructured environment. The results reveal that the ionic liquid mainly retains its structure upon salt addition, the interaction between the ammonium group of the cation and the nitrate anion being only slightly perturbed by the addition of the salt. Lithium cations are solvated by embedding them in the polar nanodomains of the solution formed by the anions, where they coordinate with the latter in a solid-like fashion reminiscent of a pseudolattice structure. Furthermore, it is shown that the average coordination number of [Li](+) with the anions is 4, nitrate coordinating [Li](+) in both monodentate and bidentate ways, and that in the second coordination layer both ethylammonium cations and other lithiums are also found. Additionally, the rattling motion of lithium ions inside the cages formed by their neighboring anions, indicative of the so-called caging effect, is confirmed by the analysis of the [Li](+) velocity autocorrelation functions. The overall picture indicates that the solvation of [Li](+) cations in this amphiphilically nanostructured environment takes place by means of a sort of inhomogeneous nanostructural solvation, which we could refer to as nanostructured solvation, and which could be a universal solvation mechanism in ionic liquids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp410090fDOI Listing

Publication Analysis

Top Keywords

solvation lithium
8
protic ionic
8
ionic liquids
8
molecular dynamics
8
ionic liquid
8
distribution functions
8
lithium cations
8
amphiphilically nanostructured
8
nanostructured environment
8
solvation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!