Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate a new technique for efficiently fabricating large-area organic crystal arrays on substrates using tip induced crystallization lithography (TICL). This technique depends on coating an amorphous organic thin film on a substrate and then inducing crystallization of the thin film using an atomic force microscope tip. After the noncrystalline materials are removed from the substrate by heating or washing, the organic crystal arrays are stable on the substrate. In this communication, the size of the smallest feature made using TICL technique is less than 1 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja412346b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!