Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology.

Oncoimmunology

Division of Interdisciplinary Medicine and Biotechnology; Beth-Israel Deaconess Medical Hospital; Harvard Medical School; Boston, MA USA ; Department of Medicine; Beth-Israel Deaconess Medical Hospital; Harvard Medical School; Boston, MA USA.

Published: November 2013

Many malignant cells produce increased amounts of lactate, which promotes the development of myeloid-derived suppressor cells (MDSCs). MDSCs, lactate, and a low pH in the tumor microenvironment inhibit the function of natural killer (NK) cells and T lymphocytes, hence allowing for disease progression. Ketogenic diets can deplete tumor-bearing animals from MDSCs and regulatory T cells, thereby improving their immunological profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881600PMC
http://dx.doi.org/10.4161/onci.26383DOI Listing

Publication Analysis

Top Keywords

myeloid-derived suppressor
8
suppressor cells
8
cells
5
tumor-derived lactate
4
lactate myeloid-derived
4
cells linking
4
linking metabolism
4
metabolism cancer
4
cancer immunology
4
immunology malignant
4

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Blockade of TIPE2-Mediated Ferroptosis of Myeloid-Derived Suppressor Cells Achieves the Full Potential of Combinatory Ferroptosis and Anti-PD-L1 Cancer Immunotherapy.

Cells

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Although immune checkpoint blockade (ICB) therapy has attained unprecedented clinical success, the tolerance and immune suppression mechanisms evolved by tumor cells and their tumor microenvironment (TME) hinder its maximum anti-cancer potential. Ferroptosis therapy can partially improve the efficacy of ICB, but it is still subject to immune suppression by myeloid-derived suppressor cells (MDSCs) in the TME. Recent research suggests that an MDSC blockade can unleash the full therapeutic potential of the combined therapy of ferroptosis and ICB in liver cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!