The cellular uptake and metabolism of methotrexate (MTX) and gamma-tert-butyl methotrexate (TBM) were compared in CEM human leukemic lymphoblasts and a highly MTX-resistant subline (CEM/MTX) in which MTX uptake is defective. The CEM/MTX cells were found previously to be as sensitive as the parent line to TBM. While MTX was polyglutamylated extensively in the CEM cells, giving abundant levels of non-effluxing conjugates, polyglutamylation in CEM/MTX cells was reduced severely, even after exposure to a high MTX concentration (100 microM) in the medium. This treatment provided free intracellular MTX in greater than 100-fold excess over the dihydrofolate reductase level. In contrast to MTX, the ester TBM was unmetabolized in either cell line. Uptake levels after incubation of CEM and CEM/MTX cells with 2 microM TBM for 24 hr were 17 and 15 pmol/mg protein respectively. Thus, TBM accumulated equally in both cells and was well retained despite the lack of polyglutamylation. These results, together with the previously observed affinity of the drug for dihydrofolate reductase, provide a plausible rationale for the comparable sensitivity of CEM and CEM/MTX cells to TBM. Experiments were also performed to determine the susceptibility of TBM to metabolic detoxification by hepatic aldehyde oxidase. Km values were 8-fold lower for TBM than for MTX in assays using an enzyme preparation from rabbit liver, and Vmax values were 8-fold higher. Neither MTX nor TBM was oxidized to its 7-hydroxy derivative in intact CEM or CEM/MTX cells. Because TBM is capable of overcoming at least one of the modalities of MTX resistance, defective polyglutamylation, and may be more efficiently detoxified than MTX by the action of hepatic aldehyde oxidase, it has the potential to be a useful agent for the treatment of MTX-resistant tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(87)90152-3DOI Listing

Publication Analysis

Top Keywords

cem/mtx cells
20
hepatic aldehyde
12
aldehyde oxidase
12
cem cem/mtx
12
mtx
10
tbm
10
metabolism methotrexate
8
gamma-tert-butyl methotrexate
8
human leukemic
8
cells
8

Similar Publications

Background And Purpose: One strategy to overcome methotrexate (MTX) resistance in acute lymphoblastic leukemia is suppressing expression. It has been proved polysaccharides (APS) exert their anticancer effect by reversing drug resistance. Due to the structural similarity of tragacanthin and bassorin with APS, we aimed to investigate the effects of the aforementioned polysaccharides on the expression of the gene in the MTX-treated CCRF-CEM cells.

View Article and Find Full Text PDF

(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin.

View Article and Find Full Text PDF

The efficiency of the chemotherapeutic agent methotrexate (MTX) in tumor cells is limited by the frequent development of the drug resistance of tumor cells. We had previously shown in vitro using human acute leukemia cells with various sensitivity to MTX (T-lymphoblastic CCRF-CEM line and resistant CEM/MTX subline) that MTX incorporation into liposomes as a lipophilic prodrug, diglyceride conjugate (MTX-DG), allows for the overcoming of cell resistance due to the impaired active transmembrane transport. In this work, we have studied the profile of binding with carbohydrates of the cell lines mentioned using carbohydrate fluorescent probes (poly(acryl amide) conjugates).

View Article and Find Full Text PDF

We have recently synthesized a lipid conjugate of the anticancer agent methotrexate (MTX-DG) and showed that the conjugate is quantitatively included in the lipid bilayer of liposomes prepared by a standard extrusion technique from an 8 : 1 : 1 (mol) egg phosphatidylcholine-yeast phosphatidylinositol-MTX-DG mixture. Both the size of liposomes (126 +/- 30 nm) and the MTX-DG concentration (4.4 mM) are relevant for systemic injections in mammals.

View Article and Find Full Text PDF

Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines.

Bioconjug Chem

July 2006

Department of Chemical Engineering and Material Science, and Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, USA.

Dendritic nanostructures can play a key role in drug delivery, due to the high density and variety of surface functional groups that can facilitate and modulate the delivery process. We have investigated the effect of dendrimer end-functionality on the activity of polyamido amine (PAMAM) dendrimer-methotrexate (MTX) conjugates in MTX-sensitive and MTX-resistant human acute lymphoblastoid leukemia (CCRF-CEM) and Chinese hamster ovary (CHO) cell lines. Two amide-bonded PAMAM dendrimer-MTX conjugates were prepared using a dicyclohexylcarbodiimide (DCC) coupling reaction: one between a carboxylic acid-terminated G2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!