A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood. | LitMetric

A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood.

Biomicrofluidics

Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan ; Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan, Taiwan ; Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan ; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.

Published: January 2014

This study proposes a capillary dielectrophoretic chip to separate blood cells from a drop of whole blood (approximately 1 μl) sample using negative dielectrophoretic force. The separating efficiency was evaluated by analyzing the image before and after dielectrophoretic force manipulation. Blood samples with various hematocrits (10%-60%) were tested with varied separating voltages and chip designs. In this study, a chip with 50 μm gap design achieved a separation efficiency of approximately 90% within 30 s when the hematocrit was in the range of 10%-50%. Furthermore, glucose concentration was electrochemically measured by separating electrodes following manipulation. The current response increased significantly (8.8-fold) after blood cell separation, which was attributed not only to the blood cell separation but also to sample disturbance by the dielectrophoretic force.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645465PMC
http://dx.doi.org/10.1063/1.4802269DOI Listing

Publication Analysis

Top Keywords

blood cell
12
cell separation
12
dielectrophoretic force
12
capillary dielectrophoretic
8
dielectrophoretic chip
8
drop blood
8
blood
7
chip
4
chip real-time
4
real-time blood
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!