Purpose: The aim of the study reported here was to evaluate characteristics of the anterior-segment via anterior-segment optical coherence tomography (AS-OCT) and corneal biomechanical properties using an ocular response analyzer and their changes by peripheral laser iridotomy (PI) in patients with pigmentary glaucoma (PG).

Materials And Methods: Seventeen eyes with PG were included consecutively. AS-OCT and ocular response analyzer measurements were taken before and 3 months after PI. Baseline morphology and change in morphology were analyzed by correlation and multiple linear regression analysis. The main parameters assessed were anterior-chamber (AC) angles and volume as well as corneal hysteresis (CH) and corneal resistance factor.

Results: AC angles were found to have decreased significantly in each quadrant after PI (P<0.001), with the highest effect seen in the temporal quadrant, which decreased from 57.0°±9.6° to 44.1°±5.2° (± standard deviation). Mean AC volume decreased significantly from 213.1±36.4 to 187.0±23.4 mm(3) (P<0.001). CH and corneal resistance factor did not change after PI. CH was found to correlate with the preoperative superior and inferior angle width (Spearman's rho 0.553 and 0.615, respectively, P<0.05). Biomechanical parameters showed no predictive value on the change of AC angles or volume.

Conclusion: PI in eyes with PG results in a highly significant reduction in the AC angles and volume as visualized by AS-OCT, with the largest effect seen in the temporal quadrant. CH is strongly positively correlated with the superior and inferior preoperative AC angles, emphasizing the importance of the biomechanical properties of the cornea for glaucoma pathogenesis in PG, but corneal biomechanical properties cannot predict PI-related AC changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883583PMC
http://dx.doi.org/10.2147/OPTH.S53088DOI Listing

Publication Analysis

Top Keywords

corneal biomechanical
8
pigmentary glaucoma
8
ocular response
8
response analyzer
8
anterior-segment morphology
4
corneal
4
morphology corneal
4
biomechanical characteristics
4
characteristics pigmentary
4
glaucoma purpose
4

Similar Publications

Purpose: A detailed study of the physicochemical properties of SMILE-derived lenticules and evaluation of their drug delivery after loading with silver nanoparticles (AgNPs).

Methods: The lenticules were decellularized and modified with crosslinking concentrations of 0.01 (0.

View Article and Find Full Text PDF

Purpose: To determine whether corneal biomechanical parameters can predict ectasia progression.

Study Design: Retrospective observational study.

Methods: The baseline corneal biomechanical parameters of 64 eyes of 41 young patients (age, < 25 years at the first visit) who were diagnosed with keratoconus (KC) or suspected KC at Osaka University Hospital and followed up for more than two years were reviewed.

View Article and Find Full Text PDF

Biomechanical study of the visual system by ocular response analyzer investigates the inter-structural biological relationships, mechanics, and function of the visual system. This review aimed to investigate the changes in corneal biomechanical parameters with age and sex. The articles published in PubMed between 2000 and 2021 were investigated and critiqued, and valid scientific evidence was collected, reviewed and concluded according to the inclusion and exclusion criteria.

View Article and Find Full Text PDF

The cornea is the primary refracting surface of the eye, requiring precise curvature to ensure optimal vision. Any distortion in its shape may result in significant visual impairment. Corneal ectasias, such as keratoconus (KC), is characterized by gradual thinning and protrusion of the thinned area, due to biomechanical weakening of the tissue, leading to astigmatism and vision loss.

View Article and Find Full Text PDF

Small Fibre Pathology in Fibromyalgia: A review.

Pain Ther

January 2025

Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Clinical Sciences Centre, University Hospital Aintree, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, L9 7AL, UK.

Fibromyalgia syndrome (FMS) presents a complex and challenging disorder in both the diagnosis and treatment, with emerging evidence suggesting a role of small fibre pathology (SFP) in its pathophysiology. The significance of the role of SFP in FMS remains unclear; however, recent evidence suggests degeneration and dysfunction of the peripheral nervous system, particularly small unmyelinated fibres, which may influence pathophysiology and underlying phenotype. Both skin biopsy and corneal confocal microscopy (CCM) have consistently demonstrated that ~ 50% of people with FMS have SFP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!