Development and preclinical evaluation of a trivalent, formalin-inactivated Shigella whole-cell vaccine.

Clin Vaccine Immunol

Department of Subunit Enteric Vaccines and Immunology, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.

Published: March 2014

Studies were undertaken to manufacture a multivalent Shigella inactivated whole-cell vaccine that is safe, effective, and inexpensive. By using several formalin concentrations, temperatures, and incubation periods, an optimized set of inactivation conditions was established for Shigella flexneri 2a, S. sonnei, and S. flexneri 3a to produce inactivated whole cells expressing a full repertoire of Ipa proteins and lipopolysaccharide (LPS). The inactivation conditions selected were treatment with 0.2% formalin (S. flexneri 2a and 3a) or 0.6% formalin (S. sonnei) for 48 h at 25°C. Vaccine formulations prepared under different inactivation conditions, in different doses (10E5, 10E7, and 10E9 cells), and with or without the inclusion of double-mutant heat-labile toxin (dmLT) were evaluated in mice. Two intranasal immunizations with ≥10E7 inactivated whole cells resulted in high levels of anti-Invaplex and moderate levels of LPS-specific IgG and IgA in serum and in lung and intestinal wash samples. Addition of dmLT to the vaccine formulations did not significantly enhance humoral immunogenicity. Minimal humoral responses for IpaB, IpaC, or IpaD were detected after immunization with inactivated whole Shigella cells regardless of the vaccine inactivation conditions. In guinea pigs, monovalent formulations of S. flexneri 2a of 3a or S. sonnei consisting of 10E8, 10E9, or 10E10 cells were protective in a keratoconjunctivitis assay. A trivalent formulation provided protection against all three serotypes (S. flexneri 2a, P = 0.018; S. flexneri 3a, P = 0.04; S. sonnei, P < 0.0001). The inactivated Shigella whole-cell vaccine approach incorporates an uncomplicated manufacturing process that is compatible with multivalency and the future development of a broadly protective Shigella vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957668PMC
http://dx.doi.org/10.1128/CVI.00683-13DOI Listing

Publication Analysis

Top Keywords

inactivation conditions
16
whole-cell vaccine
12
shigella whole-cell
8
flexneri sonnei
8
inactivated cells
8
vaccine formulations
8
inactivated shigella
8
vaccine
7
shigella
6
flexneri
6

Similar Publications

A dynamic mass balance model was developed to simulate contamination dynamics in the process water of fresh and frozen fruits, vegetables and herbs (ffFVH) during processing and handling operations. The mass balance relates to the flux of water and product in a wash tank and the number of microbial cells released in the water, inactivated by the water disinfectant or transferred from the water back to the product. Critical variables describing microbial dynamics in water are: (i) the chemical oxygen demand (COD), as an indicator of the concentration of organic matter; (ii) free chlorine (FC) and particularly its antimicrobial fraction, hypochlorous acid (HOCl); and (iii) the microbial population levels.

View Article and Find Full Text PDF

Vaccination coverage for influenza among diabetic populations remains suboptimal. Various factors contribute to this low vaccination rate, with a prominent issue being skepticism among potential vaccine recipients regarding vaccine effectiveness. We conducted a retrospective test-negative case-control study among diabetic patients aged 60 years and older in Ningbo, Zhejiang Province, China, spanning for four influenza seasons from 2018-19 to 2021-22.

View Article and Find Full Text PDF

Bovine tuberculosis (BTB) is an infectious disease of livestock and wildlife species that is caused by pathogenic members of the Mycobacterium tuberculosis complex such as Mycobacterium bovis. Due to the introduction of M. bovis-infected bison in the 1920s, BTB is now endemic in wood bison (Bison bison athabascae) population within the Wood Buffalo National Park (WBNP) in northern Canada.

View Article and Find Full Text PDF

In late 2023 an H5N1 lineage of high pathogenicity avian influenza virus (HPAIV) began circulating in American dairy cattle Concerningly, high titres of virus were detected in cows' milk, raising the concern that milk could be a route of human infection. Cows' milk is typically pasteurised to render it safe for human consumption, but the effectiveness of pasteurisation on influenza viruses in milk was uncertain. To assess this, here we evaluate heat inactivation in milk for a panel of different influenza viruses.

View Article and Find Full Text PDF

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!