Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design.

Protein Eng Des Sel

Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Published: February 2014

To maximize bioethanol production from lignocellulosic biomass, all sugars must be utilized. Yeast fermentation can be improved by introducing the d-xylose isomerase enzyme to convert the pentose sugar d-xylose, which cannot be fermented by Saccharomyces cerevisiae, into the fermentable ketose d-xylulose. The low activity of d-xylose isomerase, especially at the low pH required for optimal fermentation, limits its use. A rational enzyme engineering approach was undertaken, and seven amino acid positions were replaced to improve the activity of Streptomyces rubiginosus d-xylose isomerase towards its physiological substrate at pH values below 6. The active-site design was guided by mechanistic insights and the knowledge of amino acid protonation states at low pH obtained from previous joint X-ray/neutron crystallographic experiments. Tagging the enzyme with 6 or 12 histidine residues at the N-terminus resulted in a significant increase in the active-site affinity towards substrate at pH 5.8. Substituting an asparagine at position 215, which hydrogen bonded to the metal-bound Glu181 and Asp245, with an aspartate gave a variant with almost an order of magnitude lower KM than measured for the native enzyme, with a 4-fold increase in activity. Other studied variants showed similar (Asp57Asn, Glu186Gln/Asn215Asp), lower (Asp57His, Asn247Asp, Lys289His, Lys289Glu) or no (Gln256Asp, Asp287Asn, ΔAsp287) activity in acidic conditions relative to the native enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzt062DOI Listing

Publication Analysis

Top Keywords

d-xylose isomerase
16
streptomyces rubiginosus
8
rubiginosus d-xylose
8
rational enzyme
8
amino acid
8
native enzyme
8
enzyme
6
d-xylose
5
engineering acidic
4
acidic streptomyces
4

Similar Publications

Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities.

J Inherit Metab Dis

January 2025

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.

Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.

View Article and Find Full Text PDF

Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.

Bioresour Technol

December 2024

Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.

View Article and Find Full Text PDF

Continuous Evolution of Protein through T7 RNA Polymerase-Guided Base Editing in .

ACS Synth Biol

December 2024

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.

View Article and Find Full Text PDF

The cascade of sugar isomerases is one of the most practical methods for producing rare sugars, and enzyme immobilization endows it with high economic efficiency, operational convenience and reusability. However, the most employed cross-linker glutaraldehyde (GA) has the disadvantages of enzyme deactivation and limitation of substrate binding. Herein, three compounds, glyoxal, GA, and 2,5-furandicarboxaldehyde (DFF) were evaluated within a previously developed cascade comprising ribose-5-phosphate isomerase and D-tagatose-3-epimerase to prepare D-ribulose form D-xylose.

View Article and Find Full Text PDF
Article Synopsis
  • Xylose, derived from lignocellulose, is a crucial renewable resource for producing valuable bioproducts like fumaric acid; optimizing its conversion is essential.
  • The study identified a genetically modified strain (TKL-4) of A. pullulans that effectively uses xylose and corncob-derived xylose to produce calcium fumarate, demonstrating higher yields compared to glucose.
  • The TKL-4 strain achieved impressive fermentation results, generating up to 88.5 g/L of calcium fumarate from xylose during a 10-liter fermentation process, showcasing its potential for eco-friendly bioproduct development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!