The development and rapid spread of chloroquine resistance (CQR) in Plasmodium falciparum have triggered the identification of several genetic target(s) in the P. falciparum genome. In particular, mutations in the Pfcrt gene, specifically, K76T and mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75 and 76), are considered to be highly related to CQR. These various mutations form several different haplotypes and Pfcrt gene polymorphisms and the global distribution of the different CQR- Pfcrt haplotypes in endemic and non-endemic regions of P. falciparum malaria have been the subject of extensive study. Despite the fact that the Pfcrt gene is considered to be the primary CQR gene in P. falciparum , several studies have suggested that this may not be the case. Furthermore, there is a poor correlation between the evolutionary implications of the Pfcrt haplotypes and the inferred migration of CQR P. falciparum based on CQR epidemiological surveillance data. The present paper aims to clarify the existing knowledge on the genetic basis of the different CQR- Pfcrt haplotypes that are prevalent in worldwide populations based on the published literature and to analyse the data to generate hypotheses on the genetics and evolution of CQR malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005552PMC
http://dx.doi.org/10.1590/0074-0276130274DOI Listing

Publication Analysis

Top Keywords

pfcrt gene
12
pfcrt haplotypes
12
cqr- pfcrt
8
cqr
6
pfcrt
6
falciparum
5
genetics chloroquine-resistant
4
chloroquine-resistant malaria
4
malaria haplotypic
4
haplotypic view
4

Similar Publications

Introduction: Vietnam's goal to eliminate malaria by 2030 is challenged by the further spread of drug-resistant malaria to key antimalarials, particularly dihydroartemisinin-piperaquine (DHA-PPQ).

Methods: The custom targeted NGS amplicon sequencing assay, AmpliSeq Pf Vietnam v2, targeting drug resistance, population genetic- and other markers, was applied to detect genetic diversity and resistance profiles in samples from 8 provinces in Vietnam (n = 354), in a period of steep decline of incidence (2018-2020). Variants in 14 putative resistance genes, including and , were analyzed and within-country parasite diversity was evaluated.

View Article and Find Full Text PDF

Background: Piperaquine, used in combination with dihydroartemisinin, has been identified as a promising partner drug for uncomplicated treatment and chemoprevention of Plasmodium falciparum malaria in Africa. In light of the earlier spread of piperaquine resistance in Southeast Asia, mediated primarily by mutations in the drug efflux transporter PfCRT, we have explored whether PfCRT mutations would represent a probable path to piperaquine resistance becoming established in Africa.

Methods: We edited PfCRT mutations known to mediate piperaquine resistance in Southeast Asia into P.

View Article and Find Full Text PDF

Dihydroartemisinin-Piperaquine Combination in the Treatment of Uncomplicated Malaria: Update on Clinical Failures in Africa and Tools for Surveillance.

J Clin Med

November 2024

Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France.

Dihydroartemisinin (or artenimol)-piperaquine is one of the six artemisinin-based combination therapies recommended in uncomplicated malaria treatment. However, artemisinin partial resistance has been reported in Cambodia, Laos, Vietnam, India, and, recently, in Africa. Polymorphisms in the gene have been described as molecular markers of artemisinin resistance and the amplification of the plasmepsine II/III (/) gene has been associated with piperaquine resistance.

View Article and Find Full Text PDF

Background: Malaria remains a serious public health problem worldwide, particularly in Africa. Resistance to antimalarial drugs is an essential issue for malaria control and elimination. Currently, polymerase chain reaction (PCR) combined with Sanger sequencing is regarded as the gold standard for mutation detection.

View Article and Find Full Text PDF

Host iron deficiency is protective against severe malaria as the human malaria parasite depends on bioavailable iron from its host to proliferate. The essential pathways of iron acquisition, storage, export, and detoxification in the parasite differ from those in humans, as orthologs of the mammalian transferrin receptor, ferritin, or ferroportin, and a functional heme oxygenase are absent in . Thus, the proteins involved in these processes may be excellent targets for therapeutic development, yet remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!