Importance: Epigenetic studies present unique opportunities to advance schizophrenia research because they can potentially account for many of its clinical features and suggest novel strategies to improve disease management.

Objective: To identify schizophrenia DNA methylation biomarkers in blood.

Design, Setting, And Participants: The sample consisted of 759 schizophrenia cases and 738 controls (N = 1497) collected in Sweden. We used methyl-CpG-binding domain protein-enriched genome sequencing of the methylated genomic fraction, followed by next-generation DNA sequencing. We obtained a mean (SD) number of 68 (26.8) million reads per sample. This massive data set was processed using a specifically designed data analysis pipeline. Critical top findings from our methylome-wide association study (MWAS) were replicated in independent case-control participants using targeted pyrosequencing of bisulfite-converted DNA.

Main Outcomes And Measures: Status of schizophrenia cases and controls.

Results: Our MWAS suggested a considerable number of effects, with 25 sites passing the highly conservative Bonferroni correction and 139 sites significant at a false discovery rate of 0.01. Our top MWAS finding, which was located in FAM63B, replicated with P = 2.3 × 10-10. It was part of the networks regulated by microRNA that can be linked to neuronal differentiation and dopaminergic gene expression. Many other top MWAS results could be linked to hypoxia and, to a lesser extent, infection, suggesting that a record of pathogenic events may be preserved in the methylome. Our findings also implicated a site in RELN, one of the most frequently studied candidates in methylation studies of schizophrenia.

Conclusions And Relevance: To our knowledge, the present study is one of the first MWASs of disease with a large sample size using a technology that provides good coverage of methylation sites across the genome. Our results demonstrated one of the unique features of methylation studies that can capture signatures of environmental insults in peripheral tissues. Our MWAS suggested testable hypotheses about disease mechanisms and yielded biomarkers that can potentially be used to improve disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331014PMC
http://dx.doi.org/10.1001/jamapsychiatry.2013.3730DOI Listing

Publication Analysis

Top Keywords

methylome-wide association
8
association study
8
signatures environmental
8
environmental insults
8
improve disease
8
schizophrenia cases
8
mwas suggested
8
top mwas
8
methylation studies
8
schizophrenia
5

Similar Publications

DNA methylation-based age estimation from semen: Genome-wide marker identification and model development.

Forensic Sci Int Genet

December 2024

Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China. Electronic address:

DNA methylation at age-related CpG (AR-CpG) sites holds significant promise for forensic age estimation. However, somatic models perform poorly in semen due to unique methylation dynamics during spermatogenesis, and current studies are constrained by the limited coverage of methylation microarrays. This study aimed to identify novel semen-specific AR-CpG sites using double-enzyme reduced representation bisulfite sequencing (dRRBS) and validate these markers, alongside previously reported sites and neighboring CpGs, using bisulfite amplicon sequencing (BSAS) to develop robust age estimation models.

View Article and Find Full Text PDF

Sodium arsenite-induced DNA methylation alterations exacerbated by p53 knockout in MCF7 cells.

Heliyon

November 2024

Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France.

Epigenetic alterations are ubiquitous across human malignancies. Thus, functional characterization of epigenetic events deregulated by environmental pollutants should enhance our understanding of the mechanisms of carcinogenesis and inform preventive strategies. Recent reports showing the presence of known cancer-driving mutations in normal tissues have sparked debate on the importance of non-mutational stressors potentially acting as cancer promoters.

View Article and Find Full Text PDF

Methylome-wide association study of adolescent depressive episode with psychotic symptoms and childhood trauma.

J Affect Disord

February 2025

Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China. Electronic address:

Background: Emerging evidence suggests that DNA methylation is crucial in the mental disorder pathophysiology. The current study attempted to identify the dysregulation of DNA methylation patterns in adolescent patients suffering from depressive episodes (DE) while considering the impact of various subtypes, including psychotic symptoms and a history of childhood trauma.

Methods: The study included 67 patients with DE and 30 healthy controls (HCs) subjects.

View Article and Find Full Text PDF

The role of DNA methylation in chondrogenesis of human iPSCs as a stable marker of cartilage quality.

Clin Epigenetics

October 2024

Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.

Background: Lack of insight into factors that determine purity and quality of human iPSC (hiPSC)-derived neo-cartilage precludes applications of this powerful technology toward regenerative solutions in the clinical setting. Here, we set out to generate methylome-wide landscapes of hiPSC-derived neo-cartilages from different tissues-of-origin and integrated transcriptome-wide data to identify dissimilarities in set points of methylation with associated transcription and the respective pathways in which these genes act.

Methods: We applied in vitro chondrogenesis using hiPSCs generated from two different tissue sources: skin fibroblasts and articular cartilage.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that anesthesia during childbirth can change the DNA tags in newborn babies' blood, which is called the methylome.
  • They noticed that different types of anesthesia, like laughing gas and pudendal block, affected different blood cells in babies.
  • This study is important because it helps us understand how pain relief given to moms during delivery might have an impact on their newborns' biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!