Renshaw cells are widely distributed in all segments of the spinal cord, but detailed morphological studies of these cells and their axonal branching patterns have only been made for lumbosacral segments. For these, a characteristic distribution of terminals was reported, including extensive collateralization within 1-2 mm of the soma, but then more restricted collaterals given off at intervals from the funicular axon. Previous authors have suggested that the projections close to the soma serve inhibition of motoneurons (known to be greatest for the motor nuclei providing the Renshaw cell excitation) but that the distant projections serve mainly the inhibition of other neurons. However, in thoracic segments, inhibition of motoneurons is known to occur over two to three segments (20-40 mm) from the presumed somatic locations of the Renshaw cells. Here, we report the first detailed morphological study of Renshaw cell axons outside the lumbosacral segments, which investigated whether this different distribution of motoneuron inhibition is reflected in a different pattern of Renshaw cell terminations. Four Renshaw cells in T7 or T8 segments were intracellularly labeled with neurobiotin in anesthetized cats and their axons traced for distances ≥6 mm from the somata. The only morphological difference detected within this distance in comparison with Renshaw cells in the lumbosacral cord was a minimal taper in the funicular axons, where in the lumbosacral cord this is pronounced. Patterns of termination were virtually identical to those in the lumbosacral segments, so we conclude that these patterns are unrelated to the pattern of motoneuronal inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871475 | PMC |
http://dx.doi.org/10.1002/phy2.161 | DOI Listing |
J Cell Biol
February 2025
Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Neuroscience Physiology and Pharmacology (NPP), University College London, Gower Street, WC1E 6BT London, UK. Electronic address:
Elife
November 2024
Department of Physiology, Emory University School of Medicine, Atlanta, United States.
Neuroscience
October 2024
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.
Philippe Ascher spent his last two decades as an emeritus Professor, working in the heart of Paris. Together with his wife Jacsue they were hosted in Alain Marty's laboratory and enjoyed the happiest retirement. We started our collaboration a few years after they started their retirement research at the Saint Pères campus where I was working on spinal motoneurons' physiology.
View Article and Find Full Text PDFOpen Biol
October 2024
The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
The FAM83 (ily with sequence similarity ) family is highly conserved in vertebrates, but little is known of the functions of these proteins beyond their association with oncogenesis. Of the family, FAM83F is of particular interest because it is the only membrane-targeted FAM83 protein. When overexpressed, FAM83F activates the canonical Wnt signalling pathway and binds to and stabilizes p53; it therefore interacts with two pathways often dysregulated in disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!