Vitamin B9, commonly known as folate, is an essential cofactor for one-carbon metabolism that enters cells through three major specialized transporter molecules (RFC, FR, and PCFT), which differ in expression pattern, affinity for substrate, and ligand-binding pH dependency. We now report that the expression of the folate transporters differs between macrophage subtypes and explains the higher accumulation of 5-MTHF-the major folate form found in serum-in M2 macrophages in vitro and in vivo. M1 macrophages display a higher expression of RFC, whereas FRβ and PCFT are preferentially expressed by anti-inflammatory and homeostatic M2 macrophages. These differences are also seen in macrophages from normal tissues involved in folate transit (placenta, liver, colon) and inflamed tissues (ulcerative colitis, RA), as M2-like macrophages from normal tissues express FRβ and PCFT, whereas TNF-α-expressing M1 macrophages from inflamed tissues are RFC+. Besides, we provide evidences that activin A is a critical factor controlling the set of folate transporters in macrophages, as it down-regulates FRβ, up-regulates RFC expression, and modulates 5-MTHF uptake. All of these experiments support the notion that folate handling is dependent on the stage of macrophage polarization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0613345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!