Deep brain stimulation is an alternate treatment strategy for intractable epilepsy. The effects of low- and high-frequency electrical stimulation to the substantia nigra pars reticulata (SNr) of different sides on chemically induced neocortical seizure were investigated in the present study. After neocortical seizure was induced by ferric chloride injection into the left sensorimotor cortex, SNr was stimulated ipsilaterally, contralaterally, or bilaterally at frequencies of 130 or 20 Hz in rats. Unilateral and bilateral stimulation at 130 Hz reduced significantly the number of seizures but not their duration. Ipsilateral, contralateral as well as bilateral stimulations at 130 Hz were all equally effective, producing reductions in seizures of 63.62, 77.84, and 68.74% compared with the control group, respectively. Electrical stimulation at 20 Hz did not reduce the number or duration of seizures regardless of the side stimulated. Both unilateral and bilateral stimulations of SNr at 130 Hz can suppress ictogenesis in the cortex, but electrical stimulation at 130 or 20 Hz does not reduce the severity of individual seizures. The frequency of stimulation is paramount in suppressing neocortical seizures in which DBS at least targets SNr.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-013-0220-4DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
16
stimulation substantia
8
substantia nigra
8
nigra pars
8
pars reticulata
8
reticulata snr
8
chemically induced
8
induced neocortical
8
neocortical seizures
8
neocortical seizure
8

Similar Publications

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Role of transcutaneous electrical nerve stimulation in alleviation of tinnitus in normal hearing subjects.

Eur Arch Otorhinolaryngol

January 2025

Audio-vestibular Medicine unit, department of Ear, Nose and throat, Faculty of Medicine, Assiut University, Assiut, Egypt.

Background: Subjective tinnitus is characterized by perception of sound in the absence of any external or internal acoustic stimuli. Many approaches have been developed over the years to treat tinnitus (medical and nonmedical). However, no consensus has been reached on the optimal therapeutic approach.

View Article and Find Full Text PDF

Engineering a wirelessly self-powered neural scaffold based on primary battery principle to accelerate nerve cell differentiation.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China. Electronic address:

Electrical stimulation displayed tremendous potential in promoting nerve regeneration. However, the current electrical stimulation therapy required complex traversing wires and external power sources, which significantly limited its practical application. Herein, a self-powered nerve scaffold based on primary battery principle was gradient printed by laser additive manufacturing technique.

View Article and Find Full Text PDF

Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!