Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the major challenges for the practical application of graphene is the large scale synthesis of uniform films with high quality at lower temperature. Here, we demonstrate the use of Ag-plated Cu substrates in the synthesis of high-quality graphene films via chemical vapor deposition (CVD) of methane gas at temperatures as low as 900 °C. Various experimental analyses show that the plated Ag diffuses into Cu to form a uniform Cu-Ag alloy that suppresses the formation of multilayer nucleation and decreases the activation energy of precursor formation, leading to a lower synthesis temperature with enhanced monolayer coverage. In addition, we also observed an unusual Ag-assisted abnormal grain growth of Cu into the cube texture with larger grain sizes and reduced grain boundaries, which is believed to provide the homogeneous environment needed for uniform graphene growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54748e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!