Background: NF-κB plays a key role in ischemia reperfusion injury (IRI). Systemic inhibition of NF-κB by various methods has been proven to ameliorate IRI. However, NF-κB is also responsible for tissue protection against IRI. Systemic NF-κB inhibition may not be the optimal way for preventing IRI because of its complex roles. T cells are essential in mediating IRI. NF-κB is an important molecule during T cell activation. It is not clear the effect of T cell-specific NF-κB inhibition on IRI. We aimed to study the effect of T cell-specific NF-κB inhibition on renal IRI in IκBαΔN-Tg mice. We also compared the different effects between T cell-specific and systemic NF-κB inhibition on IRI.
Methods: Renal IRI was induced by left renal pedicle clamping for 60 or 80 min in wild-type, ursolic acid-treated or IκBαΔN-Tg mice. Renal function, histologic examination and overall survival after lethal IRI was evaluated in each group.
Results: Serum creatinine, BUN, and pathologic damage were all reduced in IκBαDN-Tg mice and ursolic acid-treated mice than those in the control group. All the above indexes were improved better in IκBαDN-Tg mice than those in ursolic acid-treated mice. The survival rate of IκBαDN-Tg mice was higher than that of ursolic acid-treated mice after lethal kidney ischemia reperfusion injury. Immunohistochemistry showed a significant reduced CD4+ T cells and neutrophil infiltration in IκBαDN-Tg mice.
Conclusion: T cell-specific NF-κB inhibition provides powerful protective effect against renal IRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.TP.0000438622.89310.95 | DOI Listing |
J Autoimmun
January 2025
Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:
Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.
View Article and Find Full Text PDFBlood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.
This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.
View Article and Find Full Text PDFJ Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!