Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2013.12.004 | DOI Listing |
J Hazard Mater
December 2024
Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:
Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy.
The clinical effects on the udder health of several trace elements-copper, iodine, cobalt, and selenium-contained in an intraruminal slow-release bolus were explored for the first time. Fifty-four dairy cows received the bolus (treated group, TG), while fifty-three were left untreated (control group, CG). Monthly composite milk samples were collected from 30 to 300 days in milk to measure somatic cell count (SCC); milk production was also recorded on the same days.
View Article and Find Full Text PDFInorg Chem
December 2024
Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address:
This study presents the first development of Cu (I) acylthiourea complexes (C1-C5) incorporated polycaprolactone/lignin (PCL/Lig) electrospun nanofiber composites (PCL/Lig@Cu(I)). Electrospinning conditions and mass ratios of PCL and lignin were optimized, followed by the incorporation of varying concentrations of Cu(I) complexes. Structural, morphological, and thermal properties were characterized using SEM, TEM, FT-IR, XRD, TGA and WCA analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!