Objective: The present study was designed to evaluate if plasma maternal folate, vitamin B-12 and homocysteine levels had an effect on maternal global DNA methylation and neonatal anthropometrics in Indian pregnant women.
Methods: A total of 49 participants having completed ≥36 weeks of pregnancy were enrolled in the study. Estimation of folate was by Ion capture assay, vitamin B-12 by microparticle enzyme immunoassay, total homocysteine by fluorescence polarization immunoassay and global DNA methylation using Cayman's DNA methylation enzyme immunoassay (EIA) kit.
Results: Folate and vitamin B-12 were inversely correlated to homocysteine in pregnant women consuming vegetarian and non-vegetarian diet. No difference in global DNA methylation was found between the vegetarian and non-vegetarian pregnant women. Folate and vitamin B-12 did not show association with global DNA methylation, however plasma total homocysteine of the vegetarian group showed significant correlation to global DNA methylation (r(2 )= 0.49, p = 0.011). Plasma total homocysteine was inversely related to tricep skinfold (r(2 )= -0.484, p = 0.01) and chest circumference (r(2 )= -0.104, p = 0.04) of neonates in vegetarian group.
Conclusion: Moderate vitamin B-12 deficiency in vegetarian pregnant women might be the cause of hyperhomocystinemia, hypermethylation when compared to vitamin B-12 sufficient non-vegetarian group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14767058.2013.879702 | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
J Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!