Exciting helical mesoporous organosilicas including supplementary chirally doped moieties into their spiral walls were one-pot successfully synthesized with good structural order for, to the best of our knowledge, the first time. This one-step direct synthesis of helical chirally doped periodic mesoporous organosilica (PMO) materials was carried out by combination of a tartrate-based bis-organosilicon precursor with tetraethyl orthosilicate (TEOS) and two surfactants, cetyltrimethylammonium bromide and perfluoroctanoic acid (CTAB and PFOA). For comparison purposes, a conventional two-step postsynthetic grafting methodology was carried out. In this method, the chiral tartrate-based moieties were grafted onto the helical silica mesoporous materials previously prepared by the dual-templating approach (CTAB and PFOA). The chirally doped materials prepared by both methodologies exhibited helical structure and high BET surface area, pore size distributions, and total pore volume in the range of mesopores. Solid-state (13)C and (29)Si MAS NMR experiments confirmed the presence of the chiral organic precursor in the silica wall covalently bonded to silicon atoms. Nevertheless, one-pot direct synthesis led to a greater control of surface properties and presented larger incorporation of organic species compared with the two-step postsynthetic methodology. To further prove the potential feasibility of these materials in enantiomeric applications, Mannich diastereoselective asymmetric synthesis was chosen as catalytic test. In the case of the one-pot PMO material, the rigidity of the chiral ligand backbone provided by its integration into the inorganic helical wall in combination with the steric impediments supplied by the twisted geometry led to the reagents to adopt specific orientations. These geometrical constrictions resulted in an outstanding diastereomeric induction toward the preferred enantiomer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la403728a | DOI Listing |
Pharmaceutics
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1430 Ås, Norway.
The interaction of Ni with (6,0) and (8,0) zigzag carbon nanotube exterior surfaces containing two vacancies was studied using density functional theory (DFT). A two-vacancy defect was analysed in order to anchor Ni, and the pristine nanotube was also considered as a reference for each chirality. The adsorbed Ni stability and the nanotube's geometry and electronic structure were analysed before and after the adsorption.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China. Electronic address:
Nano Lett
January 2025
Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain.
We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!