A kinetic study on reactions of 2-pyridyl X-substituted benzoates (6a-i) with a series of cyclic secondary amines in MeCN is reported. The Hammett plot for the reaction of 6a-i with piperidine consists of two intersecting straight lines while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ρX = 1.28 and r = 0.63, indicating that the nonlinear Hammett plot is not caused by a change in the rate-determining step but rather by resonance stabilization of substrates possessing an electron-donating group (EDG) in the benzoyl moiety. The Brønsted-type plots are linear with βnuc = 0.59 ± 0.02, which is typical of reactions reported to proceed through a concerted mechanism. A cyclic transition state (TS), which forces the reaction to proceed through a concerted mechanism, is proposed. The deuterium kinetic isotope effect of 1.3 ± 0.1 is consistent with the proposed mechanism. Analysis of activation parameters reveals that ΔH(‡) increases linearly as the substituent X changes from an electron-withdrawing group (EWG) to an EDG, while TΔS(‡) remains nearly constant with a large negative value. The constant TΔS(‡) value further supports the proposal that the reaction proceeds through a concerted mechanism with a cyclic TS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo402629eDOI Listing

Publication Analysis

Top Keywords

concerted mechanism
16
x-substituted benzoates
8
cyclic transition
8
transition state
8
hammett plot
8
proceed concerted
8
mechanism cyclic
8
mechanism
5
comparison aminolysis
4
aminolysis 2-pyridyl
4

Similar Publications

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

On the Role of Hydrogen Migrations in the Taxadiene System.

Angew Chem Int Ed Engl

January 2025

University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn, Kekulé Institute for Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121, Bonn, GERMANY.

Taxa-4,11-diene is made by the taxa-4,11-diene synthase (TxS) from Taxus brevifolia. The unique reactivity of the taxane system is characterised by long distance hydrogen migrations in the biosynthesis. This study demonstrates that selective long range hydrogen migrations also play a role in the high energy process of the EI-MS fragmentation of taxa-4,11-diene.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.

Front Med

January 2025

Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.

Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.

View Article and Find Full Text PDF

In situ detection of PD1-PD-L1 interactions as a functional predictor for response to immune checkpoint inhibition in NSCLC.

J Thorac Oncol

December 2024

Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Centre of Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway. Electronic address:

Background: Immune checkpoint inhibitors (ICIs) have transformed lung cancer treatment, yet their effectiveness appears restricted to certain patient subsets. Current clinical stratification based on PD-L1 expression offers limited predictive value. Given the mechanism of action, directly detecting spatial PD1-PD-L1 interactions might yield more precise insights into immune responses and treatment outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!