Magnetic microbead transport during resistive pulse sensing.

Biomicrofluidics

The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand ; Callaghan Innovation, 69 Gracefield Rd., Lower Hutt, New Zealand ; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.

Published: January 2014

Tunable resistive pulse sensing (TRPS) experiments have been used to quantitatively study the motion of 1 μm superparamagnetic beads in a variable magnetic field. Closed-form theory has been developed to interpret the experiments, incorporating six particle transport mechanisms which depend on particle position in and near a conical pore. For our experiments, calculations indicate that pressure-driven flow dominates electrophoresis and magnetism by a factor of ∼100 in the narrowest part of the pore, but that magnetic force should dominate further than ∼1 mm from the membrane. As expected, the observed resistive pulse rate falls as the magnet is moved closer to the pore, while the increase in pulse duration suggests that trajectories in the half space adjacent to the pore opening are important. Aggregation was not observed, consistent with the high hydrodynamic shear near the pore constriction and the high magnetization of aggregates. The theoretical approach is also used to calculate the relative importance of transport mechanisms over a range of geometries and experimental conditions extending well beyond our own experiments. TRPS is emerging as a versatile form of resistive pulse sensing, while magnetic beads are widely used in biotechnology and sensing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855170PMC
http://dx.doi.org/10.1063/1.4833075DOI Listing

Publication Analysis

Top Keywords

resistive pulse
16
pulse sensing
12
transport mechanisms
8
pulse
5
pore
5
magnetic
4
magnetic microbead
4
microbead transport
4
resistive
4
transport resistive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!