Adenovirus-mediated delivery of the human IFN-γ gene potentiates the cytotoxicity of daunorubicin against leukemic cells through downregulation of the α4β1 integrin/ILK/apoptosis pathway.

Oncol Lett

State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China ; Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China ; Institute of Hematology of Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China.

Published: February 2014

The recurrence of acute myeloid leukemia (AML) is primarily attributed to drug resistance and minimal residual disease. In addition, adhesion of hematopoietic tumor cells to bone marrow extracellular matrix via β1 integrins (α4β1 and α5β1) is crucial in this process. In the current study, the viability and antiapoptotic ability of U937 cells exposed to daunorubicin (DNR) were shown to be enhanced when cocultured with the mesenchymal stem cells (MSCs) or MSCs transduced with a recombinant adeno-LacZ vector (MSCs-LacZ), followed by upregulation of the adhesion rate of leukemic cells. Notably, cell viability, antiapoptotic and adhesive ability were reversed when U937 cells were cocultured with the MSCs transduced with a recombinant adeno-IFN-γ vector (MSCs-IFN-γ). Transwell assay showed that cell-cell contact is essential for the protective effects of unmodified MSC and the antitumor effects of IFN-γ-expressing MSCs. Western blot analysis and caspase activity assay results indicated that the α4β1 integrin/ILK/apoptosis pathway contributes to the combination effects of DNR and MSCs-IFN-γ, which was further confirmed by the results of the α4β1 integrin siRNA experiments. Thus, gene-modified MSCs expressing IFN-γ may enhance the cytotoxicity of DNR against leukemic cells through downregulation of the α4β1 pathway and may present a novel promising therapeutic strategy for AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881933PMC
http://dx.doi.org/10.3892/ol.2013.1749DOI Listing

Publication Analysis

Top Keywords

leukemic cells
12
cells downregulation
8
downregulation α4β1
8
α4β1 integrin/ilk/apoptosis
8
integrin/ilk/apoptosis pathway
8
viability antiapoptotic
8
u937 cells
8
mscs transduced
8
transduced recombinant
8
cells
7

Similar Publications

Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.

View Article and Find Full Text PDF

CD56 CD16 cells represent a distinct mature NK cell subset with altered phenotype and are associated with adverse clinical outcome upon expansion in AML.

Front Immunol

January 2025

Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France.

Introduction: Acute myeloid leukemia (AML) is a rare haematological cancer with poor 5-years overall survival (OS) and high relapse rate. Leukemic cells are sensitive to Natural Killer (NK) cell mediated killing. However, NK cells are highly impaired in AML, which promote AML immune escape from NK cell immune surveillance.

View Article and Find Full Text PDF

Non-myeloablative hematopoietic cell transplantation (HCT) is a curative option for individuals with sickle cell disease (SCD). Our traditional goal with this approach has been to achieve a state of mixed donor/recipient chimerism. Recently, we reported an increased risk of hematologic malignancies (HMs) in adults with SCD following graft failure or mixed chimerism.

View Article and Find Full Text PDF

Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia.

Brief Bioinform

November 2024

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis.

View Article and Find Full Text PDF

Atovaquone and Selinexor as a Novel Combination Treatment Option in Acute Myeloid Leukemia.

Cancer Lett

January 2025

Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria. Electronic address:

Acute myeloid leukemia (AML) is the most common acute leukemia and is predominantly affecting older patients. It is a heterogenous disease, showing a broad spectrum of genomic alterations and mutations that influence the clinical outcome and treatment options. The expression of the signal transducer and activator of transcription 3 (STAT3) is often dysregulated in AML and its constitutive activation is associated with poor outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!