Tumor Protein p63/microRNA Network in Epithelial Cancer Cells.

Curr Genomics

Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, The Johns Hopkins University School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD 21231, U.S.A.

Published: November 2013

Non-coding microRNAs are involved in multiple regulatory mechanisms underlying response of cancer cells to stress leading to apoptosis, cell cycle arrest and autophagy. Many molecular layers are implicated in such cellular response including epigenetic regulation of transcription, RNA processing, metabolism, signaling. The molecular interrelationship between tumor protein (TP)-p53 family members and specific microRNAs is a key functional network supporting tumor cell response to chemotherapy and potentially playing a decisive role in chemoresistance of human epithelial cancers. TP63 was shown to modulate the expression of numerous microRNAs involved in regulation of epithelial cell proliferation, differentiation, senescence, "stemness" and skin maintenance, epithelial/ mesenchymal transition, and tumorigenesis in several types of epithelial cancers (e.g. squamous cell carcinoma, ovarian carcinoma, prostate carcinoma, gastric cancer, bladder cancer, and breast tumors), as well as in chemoresistance of cancer cells. TP63/microRNA network was shown to be involved in cell cycle arrest, apoptosis, autophagy, metabolism and epigenetic transcriptional regulation, thereby providing the groundwork for novel chemotherapeutic venues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867720PMC
http://dx.doi.org/10.2174/13892029113146660011DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
tumor protein
8
micrornas involved
8
cell cycle
8
cycle arrest
8
epithelial cancers
8
cancer
5
cell
5
protein p63/microrna
4
p63/microrna network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!