Background: Pitx2 is the homeobox gene located in proximity to the human 4q25 familial atrial fibrillation (AF) locus. When deleted in the mouse germline, Pitx2 haploinsufficiency predisposes to pacing-induced AF, indicating that reduced Pitx2 promotes an arrhythmogenic substrate. Previous work focused on Pitx2 developmental functions that predispose to AF. Although Pitx2 is expressed in postnatal left atrium, it is unknown whether Pitx2 has distinct postnatal and developmental functions.
Methods And Results: To investigate Pitx2 postnatal function, we conditionally inactivated Pitx2 in the postnatal atrium while leaving its developmental function intact. Unstressed adult Pitx2 homozygous mutant mice display variable R-R interval with diminished P-wave amplitude characteristic of sinus node dysfunction, an AF risk factor in human patients. An integrated genomics approach in the adult heart revealed Pitx2 target genes encoding cell junction proteins, ion channels, and critical transcriptional regulators. Importantly, many Pitx2 target genes have been implicated in human AF by genome-wide association studies. Immunofluorescence and transmission electron microscopy studies in adult Pitx2 mutant mice revealed structural remodeling of the intercalated disc characteristic of human patients with AF.
Conclusions: Our findings, revealing that Pitx2 has genetically separable postnatal and developmental functions, unveil direct Pitx2 target genes that include channel and calcium handling genes, as well as genes that stabilize the intercalated disc in postnatal atrium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013500 | PMC |
http://dx.doi.org/10.1161/CIRCGENETICS.113.000259 | DOI Listing |
Circ Genom Precis Med
January 2025
CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.
Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.
Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.
Brain Struct Funct
January 2025
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.
View Article and Find Full Text PDFDev Biol
January 2025
Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka 560065, India. Electronic address:
Biologics
December 2024
Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
Introduction: Atrial fibrillation (AFib) is a common disorder featured by an irregular and fast heartbeat. The etiology of AFib is complex and involves genetic and environmental factors. The rs2200733 single nucleotide polymorphism (SNP) is located in close proximity to the promoter of paired-like homeodomain transcription factor 2 (PITX2) which plays a role in heart development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!