In the evaluation of patients with local pathologic dilatation inside the upper airway a pressure-related testing seems important for understanding its pathophysiology and for developing a concept of intra-individually adjusted therapy. Commonly used diagnostic techniques like endoscopy or medical imaging including ultrasound, barium swallow or computer-assisted tomography (CT) have shown limitations either in evaluating a dynamic process or assessing the entirety of cervical structures. This article presents a case report of a professional trumpet player with bilateral pharyngoceles, introducing real-time and three-dimensional (3D) MRI as a helpful tool in the diagnosis of pressure dependent pathologies in the upper airway. With the use of MRI the complete sub- and supraglottic airway can be viewed simultaneously, avoiding the distortion which can occur with endoscopy. Thus, it was possible to evaluate the pharyngoceles pressure-related pathophysiology, from which a successful therapy could be conceived which included modifying the musician's blowing technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.24400 | DOI Listing |
World J Stem Cells
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.
Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.
J Thorac Cardiovasc Surg
January 2025
Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.
Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).
Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.
Beijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
Salivary gland tumor is one of the most common tumors in oral and maxillofacial regions. The diagnosis and treatment of salivary gland tumors had been a clinical characteristic project in Peking University School and Hospital of Stomatology since long time ago. Here we introduced the research progress in diagnosis and treatment of salivary gland tumors during the past 10 years.
View Article and Find Full Text PDFPediatr Radiol
January 2025
Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
Background: Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!