Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023758 | PMC |
http://dx.doi.org/10.1128/AAC.00686-13 | DOI Listing |
Glycobiology
December 2024
Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
Fucosylated chondroitin sulfate (FCS), extracted from sea cucumbers' body walls, has been found to inhibit the proliferation of lung adenocarcinoma (LUAD) cells. However, there have been few studies of the associated drug targets. This study combined bioinformatics analysis and molecular docking to screen the main targets of FCS intervention in LUAD.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao, China. Electronic address:
Fucosylated chondroitin sulfate from Pearsonothuria graeffei (FCS-Pg), a natural macromolecular polysaccharide, has been proven to prevent obesity, but its underlying molecular mechanism is still unclear. C57BL/6 J mice fed on high fat diet (HFD) were administered FCS-Pg lasting for ten weeks. The results demonstrated that FCS-Pg supplementation reduced body weight with dosage manner compared with HFD group.
View Article and Find Full Text PDFFoods
October 2024
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China. Electronic address:
In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from Holothuria leucospilota, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS's potential to enhance nutrient absorption and promote growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!