Two-dimensional electron gases (2DEGs) at transition-metal oxide (TMO) interfaces, and boundary states in topological insulators, are being intensively investigated. The former system harbors superconductivity, large magneto-resistance, and ferromagnetism. In the latter, honeycomb-lattice geometry plus bulk spin-orbit interactions lead to topologically protected spin-polarized bands. 2DEGs in TMOs with a honeycomb-like structure could yield new states of matter, but they had not been experimentally realized, yet. We successfully created a 2DEG at the (111) surface of KTaO3, a strong insulator with large spin-orbit coupling. Its confined states form a network of weakly-dispersing electronic gutters with 6-fold symmetry, a topology novel to all known oxide-based 2DEGs. If those pertain to just one Ta-(111) bilayer, model calculations predict that it can be a topological metal. Our findings demonstrate that completely new electronic states, with symmetries not realized in the bulk, can be tailored in oxide surfaces, promising for TMO-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882744PMC
http://dx.doi.org/10.1038/srep03586DOI Listing

Publication Analysis

Top Keywords

two-dimensional electron
8
111 surface
8
surface ktao3
8
electron gas
4
gas six-fold
4
six-fold symmetry
4
symmetry 111
4
ktao3 two-dimensional
4
electron gases
4
gases 2degs
4

Similar Publications

The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).

View Article and Find Full Text PDF

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

Mechanistic Insights into CO Adsorption of LiSiO at High Temperature.

Materials (Basel)

January 2025

Hunan Key Laboratory of Applied Environmental Photocatalysis, School of Materials and Environmental Engineering, Changsha University, Changsha 410022, China.

The development of materials with high adsorption capacity for capturing CO from industrial exhaust gases has proceeded rapidly in recent years. LiSiO has attracted attention due to its low cost, high capture capacity, and good cycling stability for direct high-temperature CO capture. Thus far, the CO adsorption mechanism of LiSiO is poorly understood, and detailed phase transformations during the CO adsorption process are missing.

View Article and Find Full Text PDF

In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the same 200 nm GaN buffer layer with an Fe-doped concentration of 8 × 10 cm. Due to the different thicknesses of the UID-GaN layer, the concentration of Fe trails reaching the two-dimensional electron gas (2DEG) varies.

View Article and Find Full Text PDF

The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!