A combination of the temperature- and pressure-dependencies of the kinetic isotope effect on the proton coupled electron transfer during ascorbate oxidation by ferricyanide suggests that this reference reaction may exploit vibrationally assisted quantum tunnelling of the transferred proton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp55131h | DOI Listing |
Inorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France.
Large amplitude motions (LAMs), most notably represented by proton tunneling, mark a significant departure from small amplitude vibrations where protons merely oscillate around their equilibrium positions. These substantial displacements require tunneling through potential energy barriers, leading to splittings in, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!