Objective: We hypothesized that if the right hemisphere auditory processing abilities can be altered in children with developmental dyslexia (DD), we can detect dysfunction using specific tests.

Method: We performed an analytical comparative cross-sectional study. We studied 20 right-handed children with DD and 20 healthy right-handed control subjects (CS). Children in both groups were age, gender, and school-grade matched. Focusing on the right hemisphere's contribution, we utilized tests to measure alterations in central auditory processing (CAP), such as determination of frequency patterns; sound duration; music pitch recognition; and identification of environmental sounds. We compared results among the two groups.

Results: Children with DD showed lower performance than CS in all CAP subtests, including those that preferentially engaged the cerebral right hemisphere.

Conclusion: Our data suggests a significant contribution of the right hemisphere in alterations of CAP in children with DD. Thus, right hemisphere CAP must be considered for examination and rehabilitation of children with DD.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0004-282X20130172DOI Listing

Publication Analysis

Top Keywords

auditory processing
12
central auditory
8
children developmental
8
developmental dyslexia
8
children
7
cerebral hemisphere
4
hemisphere central
4
processing children
4
dyslexia objective
4
objective hypothesized
4

Similar Publications

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding.

View Article and Find Full Text PDF

Developmental maturation of millimeter-scale functional networks across brain areas.

Cereb Cortex

January 2025

Optical Imaging and Brain Sciences Medical Discovery Team, Department of Neuroscience, University of Minnesota, 2021 6th St. SE, Minneapolis, MN 55455, United States.

Processing sensory information, generating perceptions, and shaping behavior engages neural networks in brain areas with highly varied representations, ranging from unimodal sensory cortices to higher-order association areas. In early development, these areas share a common distributed and modular functional organization, but it is not known whether this undergoes a common developmental trajectory, or whether such organization persists only in some brain areas. Here, we examine the development of network organization across diverse cortical regions in ferrets using in vivo wide field calcium imaging of spontaneous activity.

View Article and Find Full Text PDF

Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.

View Article and Find Full Text PDF

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!