Improved reporting of DNA methylation data derived from studies of the human placenta.

Epigenetics

Department of Medical Genetics; University of British Columbia; Vancouver, BC Canada; Child & Family Research Institute; Vancouver, BC Canada.

Published: March 2014

Epigenetic variation is increasingly hypothesized as a mechanism underlying the effect of the in utero environment on long-term postnatal health; however, there is currently little clear data to support this in humans. A number of biological and technical factors provide challenges for the design of clinical epigenetic studies: from the type of cells or tissues that are available to the large range of predicted confounders that may impact findings. The human placenta, in addition to other neonatal tissues and whole blood, is commonly sampled for the study of epigenetic modifications. However there is little conformity for the most appropriate methods for study design, data analysis, and importantly, data interpretation. Here we present general recommendations for the reporting of DNA methylation in biological samples, with specific focus on the placenta. We outline key guidelines for: (1) placental sampling, (2) data analysis and presentation, and (3) interpretation of DNA methylation data. We emphasize the need to consider methodological noise, increase statistical power and to ensure appropriate adjustment for biological covariates. Finally, we highlight that epigenetic changes may be non-pathological and not necessarily translate into disease-associated changes. Improved reporting of DNA methylation data will be critical to identify epigenetic-based effects and to better understand the full phenotypic impact of these widely-reported epigenomic changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053451PMC
http://dx.doi.org/10.4161/epi.27648DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
reporting dna
12
methylation data
12
improved reporting
8
human placenta
8
data analysis
8
data
7
dna
4
methylation
4
data derived
4

Similar Publications

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!