Proteolytical cleavage of the picornaviral polyprotein is essential for viral replication. Therefore, viral proteases are attractive targets for anti-viral therapy. Most assays available for testing proteolytical activity of proteases are performed in vitro, using heterologously expressed proteases and peptide substrates. To deal with the disadvantages associated with in vitro assays, we modified a cell-based protease assay for picornavirus proteases. The assay is based on the induction of expression of a firefly luciferase reporter by a chimeric transcription factor in which the viral protease and cleavage sites are inserted between the GAL4 binding domain and the VP16 activation domain. Firefly luciferase expression is dependent on cleavage of the transcription factor by the viral protease. This biosafe assay enables testing the effect of compounds on protease activity in cells while circumventing the need for infection. We designed the assay for 3C proteases (3C(pro)) of various enteroviruses as well as of viruses of several other picornavirus genera, and show that the assay is amenable for use in a high-throughput setting. Furthermore, we show that the spectrum of activity of 3C(pro) inhibitor AG7088 (rupintrivir) not only encompasses enterovirus 3C(pro) but also 3C(pro) of foot-and-mouth disease virus (FMDV), an aphthovirus. In contrary, AG7404 (compound 1), an analogue of AG7088, had no effect on FMDV 3C(pro) activity, for which we provide a structural explanation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113757 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2013.12.012 | DOI Listing |
PLoS One
December 2024
Mesa Photonics, Santa Fe, NM, United States of America.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro).
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
SARS-CoV-2 main protease (M) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor M. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing.
View Article and Find Full Text PDFNature
December 2024
Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA.
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid development of highly effective vaccines against SARS-CoV-2 has altered the trajectory of the pandemic, and antiviral therapeutics have further reduced the number of COVID-19 hospitalizations and deaths. Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses that encode various structural and non-structural proteins, including those critical for viral RNA replication and evasion from innate immunity.
View Article and Find Full Text PDFGene Ther
November 2024
Analytical Development & Operations, Novartis Pharmaceuticals, 10210 Campus Point Drive, San Diego, 92121, CA, USA.
Recombinant adeno-associated viral (AAV) vectors have emerged as prominent gene delivery vehicles for gene therapy. In the journey of an AAV vector, AAV vectors can be exposed to different proteolytic environments inside the production cells, during the cell lysis step, within the endosome, and finally inside the cell nucleus. The stability of a modified AAV serotype 2 (AAV2) capsid was evaluated via a proteolytic approach using trypsin and other proteases and both denaturing and non-denaturing analytical methods.
View Article and Find Full Text PDFViruses
November 2024
Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H-Sala H29, Rio de Janeiro 21941-902, RJ, Brazil.
Endemic and pandemic viruses represent significant public health challenges, leading to substantial morbidity and mortality over time. The COVID-19 pandemic has underscored the urgent need for the development and discovery of new, potent antiviral agents. In this study, we present the synthesis and anti-SARS-CoV-2 activity of a series of benzocarbazoledinones, assessed using cell-based screening assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!