Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's α-helical region is highly homologous to those of other insect defensins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281341PMC
http://dx.doi.org/10.5483/bmbrep.2014.47.11.262DOI Listing

Publication Analysis

Top Keywords

intramolecular disulfide
8
disulfide bonds
8
insect defensins
8
disulfide bond
8
coprisin's α-helical
8
α-helical region
8
disulfide
6
coprisin
5
structure-activity relationships
4
relationships intramolecular
4

Similar Publications

This research investigated the effectiveness of supercritical fluid extrusion (SCFX) to modify the functional and structural characteristics of pea protein concentrate (PPC) and pea flour (PF). The results indicate that the SCFX process favorably modified the hydration properties of PPC and PF needed for developments in the structural and textural qualities of the meat analogs and other similar products. The water-holding capacity of extruded PPC and PF improved significantly.

View Article and Find Full Text PDF

Deep mutational scanning-guided design of a high-affinity helix-loop-helix peptide targeting G-CSF receptor.

Bioorg Med Chem Lett

December 2024

Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Electronic address:

At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity.

View Article and Find Full Text PDF

Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level.

View Article and Find Full Text PDF
Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF

Structural basis of the allosteric regulation of cyanobacterial glucose-6-phosphate dehydrogenase by the redox sensor OpcA.

Proc Natl Acad Sci U S A

December 2024

Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany.

Article Synopsis
  • The oxidative pentose phosphate (OPP) pathway is crucial for generating metabolites and reducing power in cells, with its initial reactions supporting the Calvin-Benson cycle.
  • Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme in this pathway, regulated by the redox protein OpcA in cyanobacteria, showing different activity based on OpcA's oxidation state.
  • Research using cryogenic electron microscopy revealed that OpcA interacts with G6PDH, causing structural changes that fine-tune G6PDH activity depending on the amount of OpcA bound, highlighting a sophisticated regulatory mechanism in the OPP pathway.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!