AI Article Synopsis

Article Abstract

Rice endosperm is devoid of carotenoids because the initial biosynthetic steps are absent. The early carotenogenesis reactions were constituted through co-transformation of endosperm-derived rice callus with phytoene synthase and phytoene desaturase transgenes. Subsequent steps in the pathway such as cyclization and hydroxylation reactions were catalyzed by endogenous rice enzymes in the endosperm. The carotenoid pathway was extended further by including a bacterial ketolase gene able to form astaxanthin, a high value carotenoid which is not a typical plant carotenoid. In addition to astaxanthin and precursors, a carotenoid accumulated in the transgenic callus which did not fit into the pathway to astaxanthin. This was subsequently identified as 4-keto-α-carotene by HPLC co-chromatography, chemical modification, mass spectrometry and the reconstruction of its biosynthesis pathway in Escherichia coli. We postulate that this keto carotenoid is formed from α-carotene which accumulates by combined reactions of the heterologous gene products and endogenous rice endosperm cyclization reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2013.12.008DOI Listing

Publication Analysis

Top Keywords

rice callus
8
rice endosperm
8
endogenous rice
8
rice
5
carotenoid
5
novel carotenoid
4
carotenoid 4-keto-α-carotene
4
4-keto-α-carotene unexpected
4
unexpected by-product
4
by-product genetic
4

Similar Publications

Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel tissue culture methodologies for efficient plant genetic transformation. methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement.

View Article and Find Full Text PDF

Highly Efficient Mediated Transformation of Oil Palm Using an -Glyphosate Selection System.

Plants (Basel)

November 2024

National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.

Oil palm ( Jacq.) is the most efficient oil-producing crop globally, yet progress in its research has been hampered by the lack of effective genetic transformation systems. The gene, encoding 5-enolpyruvylshikimate-3-phosphate synthase, has been used as a transgenic selection marker in various crops, including rice and soybean.

View Article and Find Full Text PDF

The codon optimised gene produces an active human basic fibroblastic growth factor in rice cell suspension culture.

Growth Factors

October 2024

Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

The coding sequence of human basic fibroblast growth factor (hbFGF) was optimised for expression in rice. An expression cassette was constructed by fusing the PCR-amplified promoter, along with its 5'UTR, 3'UTR, and terminator sequences, to the codon-optimised hbFGF sequence. This cassette was inserted into the pCAMBIA1304 shuttle vector, which also contained the RAmy3D signal peptide.

View Article and Find Full Text PDF

Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice ( L.

View Article and Find Full Text PDF

Plant tissue culture is extensively employed in plant functional genomics research and crop genetic improvement breeding. The callus induction ability is critical for utilizing Agrobacterium-mediated genetic transformation. In this study, we conducted a genome-wide association study (GWAS) utilizing 368 rice accessions to identify traits associated with callus induction rate (CIR), resulting in the identification of a total of 104 significant SNP loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!