Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of Lotus japonicus.

Plant Cell Environ

IFEVA-CONICET, Cátedra de Fisiología Vegetal, Universidad de Buenos Aires, Avenida San Martín 4453, Buenos Aires, CPA, 1417 DSE, Argentina.

Published: October 2014

Waterlogging imposes severe stress to the plant, and the interplay between root and aerial organs in the adjustment to this stress is poorly understood. A set of recombinant inbred lines (RILs) of Lotus japonicus (Gifu B-129 × Miyakojima MG-20) was subjected to control and waterlogging conditions for 21 d, and 12 traits related to leaf physiological functioning, root aerenchyma formation, shoot and root morphology, and dry mass accumulation were assessed to generate phenomic networks. The phenomic network became more complex under waterlogging as a result of the incorporation of root aerenchyma and dark-adapted Fv/Fm. Significant waterlogging-induced variation was found for stomatal conductance, dark-adapted Fv/Fm and aerenchyma. The RILs with stronger induction of aerenchyma in response to waterlogging tended to show reduced negative impact of this stress on root growth but suffered average impact on shoot growth. The RILs that retained higher stomatal conductance under waterlogging tended to retain higher dark-adapted Fv/Fm and shoot growth under waterlogging conditions but showed average impact on root traits. We propose a model where, although the stress experienced by the roots during waterlogging is transmitted to the shoot, shoots and roots deal with waterlogging in a less interdependent manner than often assumed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12268DOI Listing

Publication Analysis

Top Keywords

dark-adapted fv/fm
12
phenomic networks
8
lotus japonicus
8
waterlogging
8
waterlogging conditions
8
root aerenchyma
8
stomatal conductance
8
waterlogging tended
8
average impact
8
shoot growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!