Context: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used pharmaceuticals in Mexico, but there is not proper regulation on the sale, use and disposal. These drugs can enter water bodies by diverse pathways, attaining significant concentrations and inducing damage on hydrobionts.
Objective: To evaluate the oxidative stress and consequent damage to genetic material induced by DCF, IBP and NPX on Daphnia magna.
Methods: The acute toxicity assays were performed to 48-h by nonsteroidal anti-inflammatory drugs evaluated. A sublethal assay were done after 48 h of exposure to DCF, IBP and NPX added to water with the concentration equivalent to the lowest observed adverse effect level (LOAEL), 9.7 mg/L for DCF, 2.9 mg/L for IBP and 0.017 mg/L for NPX. The DNA damage (comet assay) was evaluated at 12, 48 and 96 h. The oxidative biomarkers were evaluated: lipid peroxidation; protein carbonyl content; activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase.
Results: D. magna exposed to DCF, IBP and NPX showed a significant increase (p < 0.05) with respect to controls in LPX. PCC was increased in IBP exposure. SOD and CAT activity were increased by exposure to IBP and NPX. GPX shows a significant increase with respect to control in IBP and DCF exposure and significant decrease by NPX exposure. DNA damage was observed in 48 and 96 h.
Discussion And Conclusion: DCF, IBP and NPX were responsible of alterations in biochemical biomarkers evaluated and DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01480545.2013.870191 | DOI Listing |
Mol Pharm
September 2024
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan 278-8510.
Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2024
Hochschule Wismar - University of Applied Sciences, Technology, Business and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
Contaminations by pharmaceuticals, personal care products, and other emerging pollutants in water resources have become a seriously burgeoning issue of global concern in the first third of the twenty-first century. As societal reliance on pharmaceuticals continues to escalate, the inadvertent introduction of these substances into water reservoirs poses a consequential environmental threat. Therefore, the aim of this study was to investigate reductive degradation, particularly, catalytic hydrogenation regarding model pollutants such as diclofenac (DCF), ibuprofen (IBP), 17α-ethinylestradiol (EE2), or bisphenol-A (BPA), respectively, in aqueous solutions at lab scale.
View Article and Find Full Text PDFChemosphere
June 2024
Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia. Electronic address:
In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties.
View Article and Find Full Text PDFSci Total Environ
March 2024
Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic. Electronic address:
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000).
View Article and Find Full Text PDFWater Res
October 2023
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Fe(VI) is a versatile agent for water purification, and various strategies have been developed to improve its pollutant removal efficiency. Herein, it was found that in addition to intermediate iron species [Fe(IV)/Fe(V)], direct electron transfer (DET) played a significant role in the abatement of organic pollutants in Fe(VI)/carbon quantum dots (CQDs) system. Around 86, 83, 73, 64, 52, 45 and 17% of BPA, DCF, SMX, 4-CP, phenol, p-HBA, and IBP (6 μM) could be oxidized by 30 μM of Fe(VI), whereas with the addition of CQDs (4 mg/L), the oxidation ratio of these pollutants increased to 98, 99, 80, 88, 87, 66 and 57%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!