Silica nanoparticles (nSiO2s) are an important type of manufactured nanoparticles. Although there are some reports about the cytotoxicity of nSiO2, the association between physical and chemical properties of nSiO2s and their cellular effects is still unclear. In this study, we examined the correlation between the physiochemical properties and cellular effects of three kinds of amorphous nSiO2s; sub-micro-scale amorphous SiO2, and micro-scale amorphous and crystalline SiO2 particles. The SiO2 particles were dispersed in culture medium and applied to HaCaT human keratinocytes and A549 human lung carcinoma cells. nSiO2s showed stronger protein adsorption than larger SiO2 particles. Moreover, the cellular effects of SiO2 particles were independent of the particle size and crystalline phase. The extent of cell membrane damage and intracellular ROS levels were different among nSiO2s. Upon exposure to nSiO2s, some cells released lactate dehydrogenase (LDH), whereas another nSiO2 did not induce LDH release. nSiO2s caused a slight increase in intracellular ROS levels. These cellular effects were independent of the specific surface area and primary particle size of the nSiO2s. Additionally, association of solubility and protein adsorption ability of nSiO2 to its cellular effects seemed to be small. Taken together, our data suggest that nSiO2s do not exert potent cytotoxic effects on cells in culture, especially compared to the effects of micro-scale SiO2 particles. Further studies are needed to address the role of surface properties of nSiO2s on cellular processes and cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15376516.2013.879505 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!