Chloroform (CF) is a widespread groundwater contaminant not susceptible to aerobic degradation. Under anoxic conditions, CF can undergo abiotic and cometabolic transformation but detoxification is generally not achieved. The recent discovery of distinct Dehalobacter strains that respire CF to dichloromethane (DCM) and ferment DCM to nonchlorinated products promises that bioremediation of CF plumes is feasible. To track both strains, 16S rRNA gene-based qPCR assays specific for either Dehalobacter strain were designed and validated. A laboratory treatability study explored the value of bioaugmentation and biostimulation to achieve CF detoxification using anoxic microcosms established with aquifer material from a CF-contaminated site. Microcosms that received 6% (v/v) of the CF-to-DCM-dechlorinating culture Dhb-CF to achieve an initial Dehalobacter cell titer of 1.6 ± 0.9 × 10(4) mL(-1) dechlorinated CF to stoichiometric amounts of DCM. Subsequent augmentation with 3% (v/v) of the DCM-degrading consortium RM to an initial Dehalobacter cell abundance of 1.2 ± 0.2 × 10(2) mL(-1) achieved complete DCM degradation in microcosms amended with 10 mM bicarbonate. Growth of the CF-respiring and the DCM-degrading Dehalobacter populations and detoxification were also observed in microcosms that received both inocula simultaneously. These findings suggest that anaerobic bioremediation (e.g., bioaugmentation) is a possible remedy at CF- and DCM-contaminated sites without CT, which strongly inhibited CF organohalide respiration and DCM organohalide fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es403582f | DOI Listing |
Environ Sci Technol
December 2024
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
Microb Genom
November 2024
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
is a genus of organohalide-respiring bacteria that is recognized for its fastidious growth using reductive dehalogenases (RDases). In the SC05 culture, however, a population also mineralizes dichloromethane (DCM) produced by chloroform dechlorination using the cassette, just downstream of its active RDase. A closed genome of this DCM-mineralizing lineage has previously evaded assembly.
View Article and Find Full Text PDFMicrobiol Resour Announc
November 2024
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
Here we present two metagenomes and two metagenome-assembled genomes from subcultures of an anaerobic chloroform and dichloromethane degrading microbial community used for bioremediation. Our objective was to assemble and curate the genome(s) of , key biodegraders in the culture, through repeated sequencing and joint assembly with previous datasets.
View Article and Find Full Text PDFJ Hazard Mater
October 2022
Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China. Electronic address:
The extracellular electron transfer (EET) is regarded as one of the crucial factors that limit the application of the bioelectrochemical system (BES). In this study, two different solid-phase redox mediators (RMs), biochar (1.2 g/L, T-B) and humin (1.
View Article and Find Full Text PDFISME J
September 2022
Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
Widespread polybrominated diphenyl ethers (PBDEs) contamination poses risks to human health and ecosystems. Bioremediation is widely considered to be a less ecologically disruptive strategy for remediation of organohalide contamination, but bioremediation of PBDE-contaminated sites is limited by a lack of knowledge about PBDE-dehalogenating microbial populations. Here we report anaerobic PBDE debromination in microcosms established from geographically distinct e-waste recycling sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!