A treatment protocol that may lead to reduced mandibular posterior residual ridge resorption in patients with overdentures retained and supported by two interforaminal implants was investigated. The treatment included the addition of short implants in the posterior edentulous mandible for the presumed purpose of favorable provision of mechanical load stimulus to alveolar bone. Three-dimensional finite element analysis was used to model cited effective strains that may stimulate bone remodeling in two selected models. Based on this laboratory study, the addition of posterior short implants has a favorable effect in maintaining bone mass under implant retained overdentures.

Download full-text PDF

Source
http://dx.doi.org/10.11607/ijp.3425DOI Listing

Publication Analysis

Top Keywords

three-dimensional finite
8
finite element
8
element analysis
8
short implants
8
preliminary three-dimensional
4
analysis mandibular
4
mandibular implant
4
implant overdentures
4
overdentures treatment
4
treatment protocol
4

Similar Publications

Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).

Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.

View Article and Find Full Text PDF

Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis.

View Article and Find Full Text PDF

Culturing living cells in three-dimensional environments increases the biological relevance of laboratory experiments, but requires solutes to overcome a diffusion barrier to reach the centre of cellular constructs. We present a theoretical and numerical investigation that brings a mechanistic understanding of how microfluidic culture conditions, including chamber size, inlet fluid velocity and spatial confinement, affect solute distribution within three-dimensional cellular constructs. Contact with the chamber substrate reduces the maximally achievable construct radius by 15%.

View Article and Find Full Text PDF

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

A solution method for active suppression of reflections in anechoic chambers.

J Acoust Soc Am

January 2025

University of Twente, Faculty of Engineering Technology, Applied Mechanics and Data Analysis, Drienerlolaan 5, 7522 NG Enschede, The Netherlands.

A solution method to improve an anechoic chamber at low frequencies with the use of active noise control is presented. The approach uses the Kirchhoff-Helmholtz integral to compute the reflected sound field resulting from the primary sources together with an algorithm to compute the filter coefficients of a controller driving secondary sources on the walls of the enclosure using reference signals as inputs, which are measured on a contour enclosing the primary sources. A causal frequency domain method with conjugate gradient iterations is derived to determine the controller.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!