Objective: The vascular system is adapted to specific functions in different tissues and organs. Vascular endothelial cells are important elements of this adaptation, leading to the concept of 'specialized endothelial cells'. The phenotype of these cells is highly dependent on their specific microenvironment and when isolated and cultured, they lose their specific features after few passages, making models using such cells poorly predictive and irreproducible. We propose a new source of specialized endothelial cells based on cord blood circulating endothelial progenitors (EPCs). As prototype examples, we evaluated the capacity of EPCs to acquire properties characteristic of cerebral microvascular endothelial cells (blood-brain barrier (BBB)) or of arterial endothelial cells, in specific inducing culture conditions.
Approach And Results: First, we demonstrated that EPC-derived endothelial cells (EPDCs) co-cultured with astrocytes acquired several BBB phenotypic characteristics, such as restricted paracellular diffusion of hydrophilic solutes and the expression of tight junction proteins. Second, we observed that culture of the same EPDCs in a high concentration of VEGF resulted, through activation of Notch signaling, in an increase of expression of most arterial endothelial markers.
Conclusions: We have thus demonstrated that in vitro culture of early passage human cord blood EPDCs under specific conditions can induce phenotypic changes towards BBB or arterial phenotypes, indicating that these EPDCs maintain enough plasticity to acquire characteristics of a variety of specialized phenotypes. We propose that this property of EPDCs might be exploited for producing specialized endothelial cells in culture to be used for drug testing and predictive in vitro assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879296 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084179 | PLOS |
J Clin Invest
January 2025
Department of Laboratory Medicine, Division of Translational Cancer Researc, Lund University Cancer Centre, Lund University, Lund, Sweden.
The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.
Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!