Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm(2)). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm(2)). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877236 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084199 | PLOS |
Medicine (Baltimore)
November 2024
Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China.
Rationale: The MYOC gene is associated with juvenile open-angle glaucoma (JOAG). This study aims to provide genetic counseling for a Chinese JOAG family by detecting MYOC mutations to identify high-risk individuals for early JOAG intervention. It also supplements the clinical characteristics of glaucoma patients with MYOC gene mutations.
View Article and Find Full Text PDFBrain Cogn
January 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China. Electronic address:
Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform.
View Article and Find Full Text PDFKlin Monbl Augenheilkd
January 2025
Department of Ophthalmology, Pallas Kliniken, Olten/Bern/Zürich/Dübendorf, Switzerland.
Background: Extended monovision is a novel mix-and-match approach that has been recently introduced. It involves implanting an aspherical monofocal intraocular lens (IOL) for distance vision in the dominant eye, and a bifocal extended depth-of-focus (EDOF) IOL in the nondominant eye. The target refraction for the nondominant eye is - 1.
View Article and Find Full Text PDFBinocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute for Computer Research, University of Alicante, P.O. Box 99, 03080 Alicante, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!