Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To solve novel problems, it is advantageous to abstract relevant information from past experience to transfer on related problems. To study whether macaque monkeys were able to transfer an abstract rule across cognitive domains, we trained two monkeys on a nonmatch-to-goal (NMTG) task. In the object version of the task (O-NMTG), the monkeys were required to choose between two object-like stimuli, which differed either only in shape or in shape and color. For each choice, they were required to switch from their previously chosen object-goal to a different one. After they reached a performance level of over 90% correct on the O-NMTG task, the monkeys were tested for rule transfer on a spatial version of the task (S-NMTG). To receive a reward, the monkeys had to switch from their previously chosen location to a different one. In both the O-NMTG and S-NMTG tasks, there were four potential choices, presented in pairs from trial-to-trial. We found that both monkeys transferred successfully the NMTG rule within the first testing session, showing effective transfer of the learned rule between two cognitive domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877192 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084100 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!