AI Article Synopsis

  • UCB-derived stem/progenitor cells (SPCs) show significant neuro-regenerative potential due to their ability to produce neurotrophins (NTs) and their receptors, with higher expression levels found in lineage-negative, CD34(+), and CD133(+) populations compared to unsorted nucleated cells (NCs).
  • Using various methods like QRT-PCR and RNA microarray analysis, the study revealed that lineage-negative cells have a greater gene expression profile related to protein production and cell behavior compared to other SPC types.
  • Additionally, these lineage-negative cells produced more neurotrophins like BDNF and NT-3 in serum-free conditions, and their conditioned medium positively influenced the survival and proliferation of neural cells

Article Abstract

Background: Stem/progenitor cells (SPCs) demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs) and their receptors in specific umbilical cord blood (UCB) SPC populations, including lineage-negative, CD34(+), and CD133(+) cells, with that in unsorted, nucleated cells (NCs).

Methods And Results: The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+), and CD133(+) cells). To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3) was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+), and CD133(+) cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+) or CD133(+) cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM) from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation.

Conclusions: Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877125PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083833PLOS

Publication Analysis

Top Keywords

cd34+ cd133+
16
humoral activity
12
nts receptors
12
lineage-negative cd34+
12
cd133+ cells
12
lineage-negative cells
12
cells
9
stem/progenitor cells
8
neurodegenerative disorders
8
spc populations
8

Similar Publications

Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.

View Article and Find Full Text PDF

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

Endothelial progenitor cells as an angiogenic biomarker for the diagnosis and prognosis of lung cancer.

Rep Pract Oncol Radiother

December 2024

Radiobiology Laboratory, Department of Molecular Biology and Biotechnology, Atomic Energy Commission (AEC), Damascus, Syria.

Background: Angiogenesis is mediated by endothelial progenitor cells (EPCs) derived from bone-marrow. In this prospective study, we tried to investigate the clinical utility of circulating EPCs in lung cancer (LC) patients.

Materials And Methods: Flow cytometry technique was used to assess circulating EPCs according to the immuno-phenotype CD45 CD34 CD133 CD146 mononuclear cells.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the major stem cells of the bone marrow and are usually isolated from the peripheral blood. In the present study, we isolated these stem cells by an apheresis method from a donor who was administered granulocyte colony-stimulating factor (G-CSF). propagation of these stem cells showed a plastic-adherence property expressing CD73 and CD105 surface markers, which is a characteristic feature of MSCs.

View Article and Find Full Text PDF

An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition.

Stem Cell Rev Rep

December 2024

Etablissement Français du Sang Nouvelle Aquitaine, CS21010, Bordeaux-Cedex, 3035, France.

To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!