Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877086 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083671 | PLOS |
Neural Netw
December 2024
School of Artificial Intelligence, Anhui University, Hefei, 237090, China; Chongqing Key Laboratory of Autonomous Systems, Institute of Artificial Intelligence, School of Automation, Chongqing University, Chongqing, 400044, China.
Biomedical signals, encapsulating vital physiological information, are pivotal in elucidating human traits and conditions, serving as a cornerstone for advancing human-machine interfaces. Nonetheless, the fidelity of biomedical signal interpretation is frequently compromised by pervasive noise sources such as skin, motion, and equipment interference, posing formidable challenges to precision recognition tasks. Concurrently, the burgeoning adoption of intelligent wearable devices illuminates a societal shift towards enhancing life and work through technological integration.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China. Electronic address:
Oriented-porous cellulose nanocrystal (CNC)-based aerogels excel in directional energy conversion but face reduced toughness, and triboelectric performance bottlenecks owing to the absence of electron acceptors. In this work, we crosslinked quaternary ammonium CNC with another flexible carboxymethyl agarose (AG-), via borate dynamic bonds, exploiting the electron-accepting traits of boron and electrophilic modifications to boost the mechanical and triboelectric performance of aerogels. These results demonstrate that the compressive resilience and modulus of CNC/AG aerogel are improved up to 70.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
Hydrogels with remarkable flexibility have gained popularity as materials for current research. However, the unfavorable properties of short-term adhesion, susceptibility to damage, and freezing in low-temperature presented by conventional hydrogels have become bottlenecks for further applications. In this work, an anti-freezing hydrogel with excellent mechanical, adhesion, and self-healing properties were developed by constructing a persistent semiquinone/quinone-catechol redox equilibrium environment.
View Article and Find Full Text PDFEntropy (Basel)
September 2024
Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-10, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan.
A highly versatile evaluation method is proposed for transient plasmas based on statistical physics. It would be beneficial in various industrial sectors, including semiconductors and automobiles. Our research focused on low-energy plasmas in laboratory settings, and they were assessed via our proposed method, which incorporates relative entropy and fractional Brownian motion, based on a revised collisional-radiative model.
View Article and Find Full Text PDFEntropy (Basel)
August 2024
Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.
By leveraging the Variational Quantum Eigensolver (VQE), the "quantum equation of motion" (qEOM) method established itself as a promising tool for quantum chemistry on near-term quantum computers and has been used extensively to estimate molecular excited states. Here, we explore a novel application of this method, employing it to compute thermal averages of quantum systems, specifically molecules like ethylene and butadiene. A drawback of qEOM is that it requires measuring the expectation values of a large number of observables on the ground state of the system, and the number of necessary measurements can become a bottleneck of the method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!