The specific targeting of protein to organelles is achieved by targeting signals being recognised by their cognate receptors. Cytosolic chaperones, bound to precursor proteins, are recognized by specific receptors of the import machinery enabling transport into the specific organelle. The aim of this study was to gain greater insight into the mode of recognition of the C-termini of Hsp70 and Hsp90 chaperones by the Tetratricopeptide Repeat (TPR) domain of the chloroplast import receptor Toc64 from Arabidopsis thaliana (At). The monomeric TPR domain binds with 1∶1 stoichiometry in similar micromolar affinity to both Hsp70 and Hsp90 as determined by isothermal titration calorimetry (ITC). Mutations of the terminal EEVD motif caused a profound decrease in affinity. Additionally, this study considered the contributions of residues upstream as alanine scanning experiments of these residues showed reduced binding affinity. Molecular dynamics simulations of the TPR domain helices upon peptide binding predicted that two helices within the TPR domain move backwards, exposing the cradle surface for interaction with the peptide. Our findings from ITC and molecular dynamics studies suggest that AtToc64_TPR does not discriminate between C-termini peptides of Hsp70 and Hsp90.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877065PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083461PLOS

Publication Analysis

Top Keywords

tpr domain
20
hsp70 hsp90
12
toc64 arabidopsis
8
arabidopsis thaliana
8
molecular dynamics
8
tpr
5
domain
5
ligand recognition
4
recognition tpr
4
domain import
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!