Ultra-deep pyrosequencing (UDPS) data treatment to study amplicon HCV minor variants.

PLoS One

Liver Unit, Internal Medicine, Lab. Malalties Hepàtiques, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Barcelona, Spain ; CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain ; Universitat Autònoma de Barcelona, Bellaterra, Spain.

Published: August 2014

We have investigated the reliability and reproducibility of HCV viral quasispecies quantification by ultra-deep pyrosequencing (UDPS) methods. Our study has been divided in two parts. First of all, by UDPS sequencing of clone mixes samples we have established the global noise level of UDPS and fine tuned a data treatment workflow previously optimized for HBV sequence analysis. Secondly, we have studied the reproducibility of the methodology by comparing 5 amplicons from two patient samples on three massive sequencing platforms (FLX+, FLX and Junior) after applying the error filters developed from the clonal/control study. After noise filtering the UDPS results, the three replicates showed the same 12 polymorphic sites above 0.7%, with a mean CV of 4.86%. Two polymorphic sites below 0.6% were identified by two replicates and one replicate respectively. A total of 25, 23 and 26 haplotypes were detected by GS-Junior, GS-FLX and GS-FLX+. The observed CVs for the normalized Shannon entropy (Sn), the mutation frequency (Mf), and the nucleotidic diversity (Pi) were 1.46%, 3.96% and 3.78%. The mean absolute difference in the two patients (5 amplicons each), in the GS-FLX and GS-FLX+, were 1.46%, 3.96% and 3.78% for Sn, Mf and Pi. No false polymorphic site was observed above 0.5%. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of HCV viral quasispecies populations, both in complexity and composition. We propose an UDPS data treatment workflow for amplicons from the RNA viral quasispecies which, at a sequencing depth of at least 10,000 reads per strand, enables to obtain sequences and frequencies of consensus haplotypes above 0.5% abundance with no erroneous mutations, with high confidence, resistant mutants as minor variants at the level of 1%, with high confidence that variants are not missed, and highly confident measures of quasispecies complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877031PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083361PLOS

Publication Analysis

Top Keywords

data treatment
12
viral quasispecies
12
ultra-deep pyrosequencing
8
pyrosequencing udps
8
udps data
8
minor variants
8
hcv viral
8
treatment workflow
8
polymorphic sites
8
gs-flx gs-flx+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!