An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency.

Front Comput Neurosci

Department of Computational Neuroscience, Bernstein Center for Computational Neuroscience, III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Germany.

Published: December 2013

Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868887PMC
http://dx.doi.org/10.3389/fncom.2013.00183DOI Listing

Publication Analysis

Top Keywords

mushroom body
20
olfactory system
16
odor concentrations
12
kenyon cells
12
system efficiency
8
antennal lobe
8
lobe mushroom
8
connectivity rates
8
high odor
8
olfactory
7

Similar Publications

Ganoderma resinaceum is a traditional mushroom that contains natural products, including ergothioneine (EGT), which has powerful antioxidant properties in the human body. To increase EGT yield from G. resinaceum, the optimal carbon and nitrogen sources in the culture medium were determined as 20 g/L sucrose and 4 g/L NH4Cl, respectively.

View Article and Find Full Text PDF

Cultivation of edible mushrooms on straw can significantly reduce production costs, provide notable environmental and ecological benefits. However, the molecular mechanisms via which mushrooms utilize straw are not well understood. We conducted a comparative transcriptomic analysis of oyster mushrooms cultivated on two different biomass substrates, namely, corncob and tobacco straw at various developmental stages.

View Article and Find Full Text PDF

Review on mushroom mycelium-based products and their production process: from upstream to downstream.

Bioresour Bioprocess

January 2025

Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production.

View Article and Find Full Text PDF

Oxidative stress can disrupt the body's ability to fight harmful free radicals, leading to premature aging and various health complications. This study investigated the antioxidant and anti-aging properties of four medicinal and edible mushrooms: , , , and . The antioxidant activity of mushroom extracts was evaluated using (DPPH-ABTS-Reducing power).

View Article and Find Full Text PDF

King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!