Sperm storage and mating in the deep-sea squid Joubin, 1931 (Oegopsida: Octopoteuthidae).

Mar Biol

Earth & Oceanic Sciences Research Institute, Auckland University of Technology, Private Bag 92006, Auckland, 1142 New Zealand.

Published: November 2009

Spermatangium implantation is reported in the large oceanic squid , based on ten mated females from the stomachs of sperm whales. Implanted spermatangia were located in the mantle, head and neck (on both sides) or above the nuchal cartilage, under the neck collar and were often associated with incisions. These cuts ranged from 30 to 65 mm in length and were probably made by males, using the beak or arm hooks. This is the first time wounds facilitating spermatangium storage have been observed in the internal muscle layers (rather than external, as observed in some other species of squid). The implications of these observations for the mating behavior of the rarely encountered squid are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873075PMC
http://dx.doi.org/10.1007/s00227-009-1326-7DOI Listing

Publication Analysis

Top Keywords

sperm storage
4
storage mating
4
mating deep-sea
4
squid
4
deep-sea squid
4
squid joubin
4
joubin 1931
4
1931 oegopsida
4
oegopsida octopoteuthidae
4
octopoteuthidae spermatangium
4

Similar Publications

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C.

Anim Reprod

January 2025

Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Background: In infertility clinics, long-time preserving high-quality spermatozoa is a challenging problem.

Objective: The present study aimed to prolong preserving of the human spermatozoa by adding pentoxifylline (PT) and L-carnitine (LC) without using high-cost freezing techniques.

Materials And Methods: In this experimental study, semen samples of 26 normozoospermia men aged between 28-34 yr, were firstly prepared using the swim-up technique, and each sample was divided into the following 3 aliquots: untreated control group, the LC, and PT-treated groups.

View Article and Find Full Text PDF

: The use of antibiotics in livestock contributes to antimicrobial resistance, highlighting the need for alternative solutions. Among these, chelating agents, like ethylenediaminetetraacetic acid (EDTA) and Chitosan, have shown potential in reducing bacterial contamination in seminal doses used in artificial insemination (AI), while preserving sperm quality. The objective of this study was to evaluate the potential use of EDTA and Chitosan as alternatives to antibiotics for the liquid storage of rabbit seminal AI doses.

View Article and Find Full Text PDF

A triad of enzymatic antioxidants viz., catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) constitutes a first line of defence against any redox imbalances in the semen. Cryopreservation enabling long term storage of semen also prompts generation of surplus reactive oxygen species (ROS) in the cells with waned antioxidants, hampering the full exploitation of this process.

View Article and Find Full Text PDF

The present study describes the differentiation process of male germ cells in Octopus vulgaris, the morphology of sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction. During spermatogenesis, the male sperm cell gradually elongates from a round shape, with cytoplasm shifting toward the head and the acrosome forming. Additionally, in the spermatid stage, the flagellum develops within the posterior nuclear channel and extends outside the cytoplasm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!